Equation of state (cosmology)

In cosmology, the equation of state of a perfect fluid is characterized by a dimensionless number , equal to the ratio of its pressure to its energy density : It is closely related to the thermodynamic equation of state and ideal gas law.

Table

Value Energy density scaling Time scaling Phenomena described Examples Topological defect dimensions Topological defect described
Free scalar field Higgs field, dilatons[citation needed] - -
Ultra-relativistic particles Photons, ultra-relativistic neutrinos, cosmic rays - -
Non-relativistic particles Cold baryonic matter, cold dark matter, cosmic neutrino background 0 Magnetic monopoles
Curvature Curvature of spacetime 1 Cosmic strings
- - 2 Domain walls
Cosmological constant Dark energy - -
- - Phantom energy - - -

The equation

The perfect gas equation of state may be written as where is the mass density, is the particular gas constant, is the temperature and is a characteristic thermal speed of the molecules. Thus where is the speed of light, and for a "cold" gas.

FLRW equations and the equation of state

The equation of state may be used in Friedmann–Lemaître–Robertson–Walker (FLRW) equations to describe the evolution of an isotropic universe filled with a perfect fluid. If is the scale factor then If the fluid is the dominant form of matter in a flat universe, then where is the proper time.

In general the Friedmann acceleration equation is where is the cosmological constant and is Newton's constant, and is the second proper time derivative of the scale factor.

If we define (what might be called "effective") energy density and pressure as and the acceleration equation may be written as

Non-relativistic particles

The equation of state for ordinary non-relativistic 'matter' (e.g. cold dust) is , which means that its energy density decreases as , where is a volume. In an expanding universe, the total energy of non-relativistic matter remains constant, with its density decreasing as the volume increases.

Ultra-relativistic particles

The equation of state for ultra-relativistic 'radiation' (including neutrinos, and in the very early universe other particles that later became non-relativistic) is which means that its energy density decreases as . In an expanding universe, the energy density of radiation decreases more quickly than the volume expansion, because its wavelength is red-shifted.

Acceleration of cosmic inflation

Cosmic inflation and the accelerated expansion of the universe can be characterized by the equation of state of dark energy. In the simplest case, the equation of state of the cosmological constant is . In this case, the above expression for the scale factor is not valid and , where the constant H is the Hubble parameter. More generally, the expansion of the universe is accelerating for any equation of state . The accelerated expansion of the Universe was indeed observed.[1] According to observations, the value of equation of state of cosmological constant is near -1.

Hypothetical phantom energy would have an equation of state , and would cause a Big Rip. Using the existing data, it is still impossible to distinguish between phantom and non-phantom .

Fluids

In an expanding universe, fluids with larger equations of state disappear more quickly than those with smaller equations of state. This is the origin of the flatness and monopole problems of the Big Bang: curvature has and monopoles have , so if they were around at the time of the early Big Bang, they should still be visible today. These problems are solved by cosmic inflation which has . Measuring the equation of state of dark energy is one of the largest efforts of observational cosmology. By accurately measuring , it is hoped that the cosmological constant could be distinguished from quintessence which has .

Scalar modeling

A scalar field can be viewed as a sort of perfect fluid with equation of state where is the time-derivative of and is the potential energy. A free () scalar field has , and one with vanishing kinetic energy is equivalent to a cosmological constant: . Any equation of state in between, but not crossing the barrier known as the Phantom Divide Line (PDL),[2] is achievable, which makes scalar fields useful models for many phenomena in cosmology.

Notes

  1. ^ Hogan, Jenny. "Welcome to the Dark Side." Nature 448.7151 (2007): 240-245. http://www.nature.com/nature/journal/v448/n7151/full/448240a.html
  2. ^ Vikman, Alexander (2005). "Can dark energy evolve to the Phantom?". Phys. Rev. D. 71 (2): 023515. arXiv:astro-ph/0407107. Bibcode:2005PhRvD..71b3515V. doi:10.1103/PhysRevD.71.023515. S2CID 119013108.

Read other articles:

City-state and microstate on the French Riviera This article is about the city-state. For other uses, see Monaco (disambiguation). Principality of MonacoPrincipauté de Monaco (French)Prinçipatu de Mùnegu (Monégasque) Flag Coat of arms Motto: Deo Juvante (Latin)(English: With God's Help)Anthem: Hymne Monégasque(English: Hymn of Monaco)Location of Monaco (green)in Europe (green & dark grey)CapitalMonaco (city-state)43°43′52″N 07°25′12″E...

 

Cagliari-Elmas AirportInternational Mario MameliAeroporto di CagliariIATA: CAGICAO: LIEE CAGLocation of the airport in SardiniaInformasiJenisMilitary/PublicPengelolaSo.G.Aer. S.p.A.MelayaniCagliari, SardiniaKetinggian dpl3 mdplKoordinat39°15′05.29″N 09°03′15.42″E / 39.2514694°N 9.0542833°E / 39.2514694; 9.0542833Situs webwww.cagliariairport.it/enLandasan pacu Arah Panjang Permukaan m kaki 14/32 2,805 9,202 Aspal 14L/32R 2,402 7,880 Aspal Bandar Ud...

 

Heinrich RohrerHeinrich RohrerLahir6 Juni 1933 (umur 90)St. GallenKebangsaanSwissDikenal atasscanning tunneling microscopePenghargaanPenghargaan Nobel dalam Fisika pada tahun 1986Karier ilmiahBidangFisika Heinrich Rohrer (lahir 6 Juni 1933) adalah seorang fisikawan Swiss. Bersama dengan Gerd Binnig atas penemuan scanning tunneling microscope ia menerima Penghargaan Nobel dalam Fisika 1986. Mereka membagi hadiah itu bersama Ernst Ruska. Ia lahir seperempat jam setelah saudari kembarnya. ...

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Johann Gottlieb Schwarz – berita · surat kabar · buku · cendekiawan · JSTOR Johann Gottlieb Schwarz, merupakan salah satu misionaris dari Jerman yang diutus oleh NZG (Nederlandsch Zendeling Genootschap) ...

 

MathewsCurrent regionUnited StatesPlace of originBritainFoundedArrival in the Colony of Virginia c. 1730, Augusta County287 years agoFounderJohn Mathews (d. 1757)Ann ArcherMembersGeorge MathewsSampson MathewsHenry M. MathewsMason Mathews Patrickand othersConnected familiesEarlyOteyPatrickPoseyReynolds The Mathews family is an American political family descended from John Mathews (d. 1757) and Ann Archer, originating in colonial Virginia and active in Virginia and the American South in the 18...

 

Winston Western 500NASCAR Winston Cup SeriesTempatRiverside International RacewayLokasiMoreno Valley, CaliforniaPerusahaan sponsorWinstonLomba pertamaCrown America 500 1958[1]Lomba terakhirWinston Western 500 1987[2]Jarak tempuh311.8 miles (502 km)Jumlah putaran119Nama sebelumnyaCrown America 500 (1958)Unnamed (1961)Riverside 500 (1963)Motor Trend 500 (1964–1971)Winston Western 500 (1972–1987)Terbanyak menang(pengemudi)Dan Gurney (5)Terbanyak menang(pabrikan)Ford (11) Wins...

Koin perak dari Thurii Thurii (bahasa Yunani Kuno: Θούριοι), disebut juga Thurium oleh beberapa penulis Latin, pernah pula disebut Copia dan Copiae, adalah kota di Yunani Besar, terletak di Teluk Taranto, dekat dari situs Sybaris. Kini tempat ini menjadi bagian dari frazione Thurio, komune Corigliano Calabro, di Provinsi Cosenza, region Calabria, Italia. Rujukan  Artikel ini memadukan teks dari suatu publikasi yang sekarang dalam ranah publik: Smith, William, ed. (18...

 

John McHugh 21º Segretario all'Esercito degli Stati UnitiDurata mandato21 settembre 2009 –1º novembre 2015 PresidenteBarack Obama PredecessorePete Geren SuccessoreEric Fanning Membro della Camera dei Rappresentanti - New York, distretto n.23Durata mandato3 gennaio 2003 –21 settembre 2009 PredecessoreSherwood Boehlert SuccessoreBill Owens Membro della Camera dei Rappresentanti - New York, distretto n.24Durata mandato3 gennaio 1993 –3 gennaio 20...

 

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: コルク – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2017年4月) コルクを打ち抜いて作った瓶の栓 コルク(木栓、�...

Ulrich of SanneckSeal of Ulrich of SanneckLord of ŽovnekReignaround 1286 - 1316PredecessorLiutpold III of SanneckSuccessorFrederick I, as Count of Celje BornŽovnek CastleNoble familyHouse of SanneckSpouse(s)Anne of Sternberg, Catherine of HeunburgIssueFrederick I of CeljeFatherConrad I of Sanneck Ulrich of Sanneck (German: Ulrich von Sanneck, Slovene: Ulrik Žovneški; around 1255 – 1316), Lord of Žovnek (Sanneck, in German), was a free noble (roughly equivalent to a baron) in the Ma...

 

莎拉·阿什頓-西里洛2023年8月,阿什頓-西里洛穿著軍服出生 (1977-07-09) 1977年7月9日(46歲) 美國佛羅里達州国籍 美國别名莎拉·阿什頓(Sarah Ashton)莎拉·西里洛(Sarah Cirillo)金髮女郎(Blonde)职业記者、活動家、政治活動家和候選人、軍醫活跃时期2020年—雇主內華達州共和黨候選人(2020年)《Political.tips》(2020年—)《LGBTQ國度》(2022年3月—2022年10月)烏克蘭媒�...

 

此条目序言章节没有充分总结全文内容要点。 (2019年3月21日)请考虑扩充序言,清晰概述条目所有重點。请在条目的讨论页讨论此问题。 哈萨克斯坦總統哈薩克總統旗現任Қасым-Жомарт Кемелұлы Тоқаев卡瑟姆若马尔特·托卡耶夫自2019年3月20日在任任期7年首任努尔苏丹·纳扎尔巴耶夫设立1990年4月24日(哈薩克蘇維埃社會主義共和國總統) 哈萨克斯坦 哈萨克斯坦政府...

Peruvian footballer (1943–2022) Orlando de la Torre De la Torre playing for Sporting CristalPersonal informationFull name Orlando de la Torre CastroDate of birth (1943-11-21)21 November 1943Place of birth Trujillo, Department of La Libertad, PeruDate of death 24 August 2022(2022-08-24) (aged 78)Height 1.80 m (5 ft 11 in)Position(s) DefenderSenior career*Years Team Apps (Gls)1960–1973 Sporting Cristal International career1967–1973 Peru 39 (0) *Club domestic league app...

 

President of Zimbabwe since 2017 Emmerson MnangagwaOfficial portrait, 20173rd President of ZimbabweIncumbentAssumed office 24 November 2017Vice PresidentConstantino ChiwengaKembo MohadiPreceded byRobert MugabePresident and First Secretary of ZANU-PFIncumbentAssumed office 19 November 2017Preceded byRobert MugabeFirst Vice-President of ZimbabweIn office12 December 2014 – 6 November 2017PresidentRobert MugabePreceded byJoice MujuruSucceeded byConstantino ChiwengaMinister ...

 

Ideology which seeks to return to the fundamentals of Islam Part of a series onIslamism Fundamentals Islam History Culture Economics Politics Secularism Ideologies Islamism Qutbism Khomeinism Salafi movement International propagation by country/region Shia Islamism Islamic fundamentalism Concepts Apostasy in Islam Takfir Caliphate Islamic democracy Islamic socialism Islamic state Islamic monarchy Islamic republic Islamization (of knowledge) Jihad Islamic terrorism Jihadism Pan-Islamism P...

Sîn-kāšidRaja UrukKerucut tanah liat yang bertuliskan “Sîn-kāšid, raja perkasa, kerajaan yang dibangunnya,” dari the Walters Art Museum, Baltimore.Berkuasaskt. 1803–1770 SMPendahulu? Ikūn-pî-IštarPenerusSîn-irībamSin-kāšid, tertulis dEN.ZU-ka-ši-id, merupakan seorang raja kota kuno Mesopotamia, Uruk selama paruh pertama abad ke-18 SM. Tanggal tepatnya tidak pasti, mungkin skt. 1803-1770 SM (kronologi pendek) sesuai dengan skt.1865-1833 SM (kronologi tengah), namun kemungki...

 

Hutchison Whampoa 和記黃埔JenisPublikIndustriKonglomeratNasibDiakuisisi oleh CKPenerusCK Hutchison HoldingsDidirikan1863; 161 tahun lalu (1863)PendiriJohn Duflon HutchisonDitutup03 Juni 2015 (2015-06-03)KantorpusatVictoria, Hong Kong, Admiralty (dekat Central)[1]TokohkunciSir Li Ka-shing (Mantan chairman)ProdukLayanan pelabuhan, properti dan hotel, ritel, energi, infrastruktur, telekomunikasi, keuangan dan investasiPendapatanUS$54,035 milyar (2014)Laba bersihHK$56.01 mil...

 

جزء من سلسلة مقالات حولجائحة فيروس كورونا SARS-CoV-2 (الفيروس) COVID-19 (المرض) خط زمني التسلسل الزمني 2019 نوفمبر-ديسمبر 2020 يناير فبراير مارس أبريل المواقع المناطق 2019–20 أفريقيا 2020 آسيا 2020 أوروبا 2020 أمريكا الشمالية 2020 أوقيانوسيا 2020 أمريكا الجنوبية 2020 السفن السياحية العزل الصحي النمس...

Microwave horn antenna in New Jersey, US Holmdel Horn AntennaThe Holmdel Horn Antenna in use in 1962Named afterHolmdel Township Location(s)Holmdel Township, Monmouth County, New JerseyCoordinates40°23′27″N 74°11′05″W / 40.39072°N 74.18483°W / 40.39072; -74.18483 First light1959 Telescope stylecosmic microwave background experimenthorn antennaradio telescope Diameter20 ft (6.1 m) Location of Holmdel Horn AntennaHolmdel...

 

Territorial subdivision of some French communes This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Municipal arrondissements of France – news · newspapers · books · scholar · JSTOR (December 2009) (Learn how and when to remove this message) This article is part of a series on theAdministrativedivisions of France Administrative d...