Donald G. Higman

Donald G. Higman (September 20, 1928 in Vancouver – February 13, 2006) was an American mathematician known for his discovery, in collaboration with Charles C. Sims, of the Higman–Sims group.[1]

Higman did his undergraduate studies at the University of British Columbia,[1] and received his Ph.D. in 1952 from the University of Illinois Urbana-Champaign under Reinhold Baer.[2] He served on the faculty of mathematics at the University of Michigan from 1956 to 1998.[1]

His work on homological aspects of group representation theory established the concept of a relatively-projective module and explained its role in the theory of module decompositions. He developed a characterization of rank-2 permutation groups, and a theory of rank-3 permutation groups; several of the later-discovered sporadic simple groups were of this type, including the Higman–Sims group which he and Sims constructed in 1967.[1]

References

  1. ^ a b c d Bannai, Eiichi; Griess, Robert L. Jr.; Praeger, Cheryl E.; Scott, Leonard (2009), "The mathematics of Donald Gordon Higman" (PDF), Michigan Math. J., 58: 3–30, doi:10.1307/mmj/1242071682, S2CID 17392124.
  2. ^ Donald G. Higman at the Mathematics Genealogy Project

Read other articles:

Palacio de las TulleríasPalais des Tuileries El palacio de las Tullerías detrás de su entrada monumental, el Arco del Carrusel.LocalizaciónPaís FranciaUbicación París,  FranciaCoordenadas 48°51′44″N 2°19′52″E / 48.862222222222, 2.3311111111111Información generalEstado DemolidoUsos Palacio realEstilo Renacimiento, Barroco, Neoclasicismo, Neobarroco, Estilo Segundo ImperioPrimera piedra 1564Construcción 1564Demolido 1883Diseño y construcciónArquitecto P...

2000 novel by Dave Stone The topic of this article may not meet Wikipedia's notability guideline for books. Please help to demonstrate the notability of the topic by citing reliable secondary sources that are independent of the topic and provide significant coverage of it beyond a mere trivial mention. If notability cannot be shown, the article is likely to be merged, redirected, or deleted.Find sources: Heart of TARDIS – news · newspapers · books · scholar&...

Wappen Deutschlandkarte 52.5947222222228.8361111111111Koordinaten: 52° 36′ N, 8° 50′ O Basisdaten Bestandszeitraum: 1974– Bundesland: Niedersachsen Landkreis: Diepholz Fläche: 180,09 km2 Einwohner: 7419 (31. Dez. 2022)[1] Bevölkerungsdichte: 41 Einwohner je km2 Kfz-Kennzeichen: DH, SY Verbandsschlüssel: 03 2 51 5404 Verbandsgliederung: 6 Gemeinden Adresse der Verbandsverwaltung: Rathausstraße 1227245 Kirchdorf Webs...

Eleições presidenciais portuguesas de 2016 Distritos: Aveiro | Beja | Braga | Bragança | Castelo Branco | Coimbra | Évora | Faro | Guarda | Leiria | Lisboa | Portalegre | Porto | Santarém | Setúbal | Viana do Castelo | Vila Real | Viseu | Açores | Madeira | Estrangeiro ← 2011 •  • 2021 → Eleições presidenciais portuguesas de 2016 no distrito do Porto 24 de janeiro de 2016 Demografia eleitoral Hab. inscritos:  1 592 891 Votant...

De Via Catalana op de Via Augusta in Tarragona De Catalaanse Weg (Catalaans: Via Catalana), oftewel Catalaanse Weg naar Onafhankelijkheid (Catalaans: Via Catalana cap a la Independència), is een actie die op 11 september 2013, de Catalaanse Nationale Feestdag door de Assemblea Nacional Catalana (ANC) georganiseerd werd.[1][2] Beschrijving De menselijke keten volgde de oude Romeinse heerweg Via Augusta over ongeveer 480 kilometer,[3] van de Franse grens in El Pertus to...

Good King Wenceslas is een Engels kerstlied over Wenceslaus de Heilige (928–935). De tekst van het lied is in 1853 geschreven door John Mason Neale en handelt over Wenceslaus die op de feestdag van Stefanus (op 26 december, tweede kerstdag) een man hout ziet sprokkelen en hem een aalmoes wil geven. Zijn page wil opgeven en heeft het moeilijk met de kou, maar volgt Wenceslaus iedere stap. Het lied verscheen voor het eerst in Carols for Christmas-Tide. Voor de melodie werd het 13e-eeuwse Temp...

Keunggulan relatif dalam hubungan internasional adalah tindakan negara untuk mengejar keseimbangan kekuasaan tanpa mempertimbangkan faktor-faktor lain seperti ekonomi. Dalam hubungan internasional, kerja sama antarnegara diperlukan untuk menyeimbangkan kekuasaan, tetapi usaha mengejar keunggulan relatif akan mengurangi kerja sama karena rendahnya kualitas informasi mengenai perilaku dan kepentingan negara lain. Keunggulan relatif berkaitan dengan permainan tanpa hasil. Teori permainan tanpa h...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Februari 2023. Ilustrasi sms broadcast. SMS massal (bahasa Inggris: SMS Broadcast) adalah metode pengiriman SMS ke banyak nomor dari satu sumber/ server dengan isi pesan yang sama.[1] Istilah lain untuk SMS massal adalah SMS bulk, Web2SMS, atau SMS lewat int...

Stamp of Kenya depicting the national flag and ensignia. Stamp commemorating the founding of the Republic of Kenya. This is a survey of the postage stamps and postal history of Kenya. British colonial issues Main articles: Postage stamps and postal history of British East Africa; Postage stamps and postal history of East Africa and Uganda Protectorates; and Postage stamps and postal history of Kenya, Uganda, Tanganyika Kenya used stamps of British East Africa Company (1890-1895), British East...

二戰時期電傳打字機 西門子「Fernscheiber 100」電傳打字機 電傳打字機(Teleprinter、Teletypewriter或Teletype,縮寫為 TTY),簡稱電傳,是遠距離列印交換的編寫形式。電傳既具有電話的快速,又具有打字機的準確,尤其是當電文中有資料時,這種優點表現得特別明顯。人們普遍認為,電傳這種通訊方式,除了具備高效性和精確性之外,還比電報和電話更為便宜。 電傳是在傳真機普...

Mauthausen-Gusen Bien de interés patrimonial de Austria Prisioneros de Mauthausen saludan a la 11.ª División Acorazada de los EE. UU. por su liberación bajo una pancarta escrita en español sobre sábanas castrensesLocalización geográficaCoordenadas 48°15′32″N 14°30′04″E / 48.258888888889, 14.501111111111Localización administrativaPaís Alemania naziMunicipio Mauthausen, AustriaLocalidad MauthausenHistoriaUso original Campo de concentración y de extermin...

For the Tori Kelly song, see Unbothered (song). 2021 studio album by Lil SkiesUnbotheredStudio album by Lil SkiesReleasedJanuary 22, 2021 (2021-01-22)Recorded2019–2020Genre Hip hop trap emo rap Length42:00LabelAll We GotAtlanticProducer Andrew Cedar Based1 Buddah Bless CashMoneyAP Cubeatz Danny Wolf Dru Armada Gibbo Hagan Jakik LMC MVA Beats Neel & Alex Nils Noahsaki Pvlace Rello Slim Pharaoh Sprite Lee Steeze T-Minus Vendr Lil Skies chronology Shelby(2019) Unboth...

Chinese warlord and politician (1865–1936) In this Chinese name, the family name is Duan. Duan Qirui段祺瑞Duan in 1913Chief Executive of the Republic of ChinaIn office24 November 1924 – 20 April 1926PremierXu ShiyingJia DeyaoPreceded byHuang Fu (acting)Succeeded byHu Weide (acting)Premier of the Republic of ChinaIn office23 March 1918 – 10 October 1918PresidentFeng Guozhang (acting)Preceded byQian NengxunSucceeded byQian NengxunIn office14 July 1917 – 22 ...

Part of the series onHistory of Montreal History Hochelaga (village)(16th century)Old Montreal(since 17th century)North West Company(1779–1821)Merger and demerger(2001–2005) Timeline of Montreal history Founded by Maisonneuve 1642Sulpicians takeover 1663Great Peace of Montreal 1701British takeover 1760Lachine Canal opened 1825Burning of the Parliament 1849Universal and Int'l Exhibition 1967October Crisis 1970Summer Olympics 1976 Other Oldest buildings National Historic Sites List of gover...

極付印度伝 マハーバーラタ戦記脚本(原作者不明)青木豪(脚本)宮城聰(演出)初演日2017年10月1日 (2017-10-01)初演場所歌舞伎座オリジナル言語日本語ジャンル新作歌舞伎軍記物舞台設定古代インドの人々と神々の世界(架空の世界) 『極付印度伝 マハーバーラタ戦記』(きわめつきいんどでん マハーバーラタせんき)は、インドの神話的叙事詩であるマハーバー...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يوليو 2019) ستانلي بالمر معلومات شخصية الميلاد سنة 1936 (العمر 86–87 سنة)[1]  مواطنة نيوزيلندا  الزوجة نويل بالمر  [لغات أخرى]‏[2]  الحياة العملية الم...

This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: The Miraculous Mellops TV series – news · newspapers · books · scholar · JSTOR (June 2020) (Learn how and when to remove this template message) Australian TV series or program The Miraculous MellopsGenreSci-Fi ComedyCreated by Karl Zwicky Margarita Tassone Starring Tro...

American reality television series Tampa BaesGenreReality televisionStarring Cuppie Bragg Marissa Gialousis Haley Grable Mack McKenzie Summer Mitchell Olivia Mullins Brianna Murphy Ali Myers Shiva Pishdad Melanie Posner Nelly Ramirez Jordan Whitley Country of originUnited StatesOriginal languageEnglishNo. of seasons1No. of episodes8ProductionExecutive producers Jeff Altrock Melissa Bidwell Paul O'Malley Reinout Oerlemans Ross Weintraub Production locations Tampa Bay, Florida St. Petersburg, F...

Hyperlink to a resource in the same domain or website External link redirects here. For information about external links in Wikipedia, see Wikipedia:External links. This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and remov...

Federal constituency in Sabah, Malaysia Beluran (P183) Sabah constituencyFederal constituencyLegislatureDewan RakyatMPRonald KiandeePNConstituency created1994First contested1995Last contested2022DemographicsPopulation (2020)[1]101,066Electors (2022)[2]44,727Area (km²)7,448Pop. density (per km²)13.6 Beluran is a federal constituency in Sandakan Division (Telupid District and Beluran District), Sabah, Malaysia, that has been represented in the Dewan Rakyat since 1995. The fede...