Diffusion current

Diffusion current is a current in a semiconductor caused by the diffusion of charge carriers (electrons and/or electron holes). This is the current which is due to the transport of charges occurring because of non-uniform concentration of charged particles in a semiconductor. The drift current, by contrast, is due to the motion of charge carriers due to the force exerted on them by an electric field. Diffusion current can be in the same or opposite direction of a drift current. The diffusion current and drift current together are described by the drift–diffusion equation.[1]

It is necessary to consider the part of diffusion current when describing many semiconductor devices. For example, the current near the depletion region of a p–n junction is dominated by the diffusion current. Inside the depletion region, both diffusion current and drift current are present. At equilibrium in a p–n junction, the forward diffusion current in the depletion region is balanced with a reverse drift current, so that the net current is zero.

The diffusion constant for a doped material can be determined with the Haynes–Shockley experiment. Alternatively, if the carrier mobility is known, the diffusion coefficient may be determined from the Einstein relation on electrical mobility.

Overview

Diffusion current versus drift current

The following table compares the two types of current:

Diffusion current Drift current
Diffusion current = the movement caused by variation in the carrier concentration. Drift current = the movement caused by electric fields.
Direction of the diffusion current depends on the slope of the carrier concentration. Direction of the drift current is always in the direction of the electric field.
Obeys Fick's law: Obeys Ohm's law:

Carrier actions

No external electric field across the semiconductor is required for a diffusion current to take place. This is because diffusion takes place due to the change in concentration of the carrier particles and not the concentrations themselves. The carrier particles, namely the holes and electrons of a semiconductor, move from a place of higher concentration to a place of lower concentration. Hence, due to the flow of holes and electrons there is a current. This current is called the diffusion current. The drift current and the diffusion current make up the total current in the conductor. The change in the concentration of the carrier particles develops a gradient. Due to this gradient, an electric field is produced in the semiconductor.

Derivation

In a region where n and p vary with distance, a diffusion current is superimposed on that due to conductivity. This diffusion current is governed by Fick's law:

where:

F is flux.
De is the diffusion coefficient or diffusivity
is the concentration gradient of electrons
there is a minus sign because the direction of diffusion is opposite to that of the concentration gradient

The diffusion coefficient for a charge carrier is related to its mobility by the Einstein relation:

where:

kB is the Boltzmann constant
T is the absolute temperature
e is the electrical charge of an electron

Now let's focus on the diffusive current in one-dimension along the x-axis:

The electron current density Je is related to flux, F, by:

Thus

Similarly for holes:

Notice that for electrons the diffusive current is in the same direction as the electron density gradient because the minus sign from the negative charge and Fick's law cancel each other out. However, holes have positive charges and therefore the minus sign from Fick's law is carried over.

Superimpose the diffusive current on the drift current to get

for electrons

and

for holes

Consider electrons in a constant electric field E. Electrons will flow (i.e. there is a drift current) until the density gradient builds up enough for the diffusion current to exactly balance the drift current. So at equilibrium there is no net current flow:


Example

To derive the diffusion current in a semiconductor diode, the depletion layer must be large compared to the mean free path. One begins with the equation for the net current density J in a semiconductor diode,

where D is the diffusion coefficient for the electron in the considered medium, n is the number of electrons per unit volume (i.e. number density), q is the magnitude of charge of an electron, μ is electron mobility in the medium, and E = −dΦ/dx (Φ potential difference) is the electric field as the potential gradient of the electric potential. According to the Einstein relation on electrical mobility and . Thus, substituting E for the potential gradient in the above equation (1) and multiplying both sides with exp(−Φ/Vt), (1) becomes:

Integrating equation (2) over the depletion region gives

which can be written as

where

The denominator in equation (3) can be solved by using the following equation:

Therefore, Φ* can be written as:

Since the xxd, the term (xdx/2) ≈ xd, using this approximation equation (3) is solved as follows:

,

since (ΦiVa) > Vt. One obtains the equation of current caused due to diffusion:

From equation (5), one can observe that the current depends exponentially on the input voltage Va, also the barrier height ΦB. From equation (5), Va can be written as the function of electric field intensity, which is as follows:

Substituting equation (6) in equation (5) gives:

From equation (7), one can observe that when a zero voltage is applied to the semi-conductor diode, the drift current totally balances the diffusion current. Hence, the net current in a semiconductor diode at zero potential is always zero.

As carriers are generated (green:electrons and purple:holes) due to light shining at the center of an intrinsic semiconductor, they diffuse towards two ends. Electrons have higher diffusion constant than holes leading to fewer excess electrons at the center as compared to holes.

The equation above can be applied to model semiconductor devices. When the density of electrons is not in equilibrium, diffusion of electrons will occur. For example, when a bias is applied to two ends of a chunk of semiconductor, or a light is shining in one place (see right figure), electrons will diffuse from high density regions (center) to low density regions (two ends), forming a gradient of electron density. This process generates diffusion current.

See also

References

  1. ^ McGraw Hill Encyclopaedia of Physics (2nd Edition), C.B. Parker, 1994, ISBN 0-07-051400-3

Read other articles:

AwardAir Assault BadgeTypeSpecial skills badgeAwarded forAir Assault training coursePresented byUnited States ArmyStatusCurrently awardedEstablished1974Last awardedOngoingPrecedenceNext (higher)Pathfinder BadgeNext (lower)Aviation Badges[1] The Air Assault Badge[2] is awarded by the U.S. Army for successful completion of the Air Assault School. The course includes three phases of instruction involving U.S. Army rotary wing aircraft: combat air assault operations; rig...

 

Aspergillus Konidium Aspergillus niger Klasifikasi ilmiah Kerajaan: Fungi Filum: Ascomycota Kelas: Eurotiomycetes Ordo: Eurotiales Famili: Trichocomaceae Genus: AspergillusMicheli (1729) Spesies Lihat Daftar spesies Aspergillus Aspergillus (/ˌæspərˈdʒɪləs/) adalah genus yang terdiri dari beberapa ratus spesies kapang dan beberapa patogen pada manusia dan tumbuhan [1]yang ditemukan di berbagai iklim di seluruh dunia. Aspergillus pertama kali dikatalogkan pada tahun 1729 oleh pa...

 

Artikel ini bukan mengenai Miss Mega Bintang Indonesia. Miss Grand IndonesiaLogo Miss Grand IndonesiaSingkatanMGIDigabungkan ke dalam Puteri Indonesia (2013, 2016–2017) Miss Mega Bintang Indonesia (2023–sekarang) Tanggal pendirian2013Tanggal pembubaran2022TipeKontes kecantikanKantor pusatJakarta, IndonesiaLokasiIndonesiaJumlah anggota Miss Grand InternationalBahasa resmi Bahasa IndonesiaBahasa InggrisPresiden Putri Kuswisnu Wardani (2013, 2016–2017) Johny Sugiarto (2014–2015) Dik...

Diprotodontia[1] Periode 28–0 jtyl PreЄ Є O S D C P T J K Pg N Oligosen Akhir - Sekarang Diprotodontia Seekor diprotodon, Walabi Agile (Macropus agilis)TaksonomiKerajaanAnimaliaFilumChordataKelasMammaliaOrdoDiprotodontia Owen, 1866 SubordoVombatiformesPhalangeriformesMacropodiformesDistribusiEndemikAustralasia lbs Diprotodontia (pengucapan bahasa Inggris: [daɪ.proʊ.toʊ.dɑːn.ʃiːə]; Yunani, berarti dua gigi depan) adalah ordo besar dari sekitar 120 mamalia marsupia...

 

العلاقات الألبانية الناميبية ألبانيا ناميبيا   ألبانيا   ناميبيا تعديل مصدري - تعديل   العلاقات الألبانية الناميبية هي العلاقات الثنائية التي تجمع بين ألبانيا وناميبيا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه ال...

 

Hermann de WiedFonctionsArchevêque de CologneArchidiocèse de Cologne1515-1547Philip II of Daun-Oberstein (en)Adolphe XIII de SchaumbourgPrince-électeurÉlectorat de Cologne1515-1547Administrateur diocésainDiocèse de Paderborn (d)BiographieNaissance 14 janvier 1477Château fort de AltwiedDécès 15 août 1552 (à 75 ans)Activité Prêtre catholiquePère Frédéric de Wied (d)Mère Agnès de Virnebourg (d)modifier - modifier le code - modifier Wikidata Hermann de Wied (allem...

Mata ayam Klasifikasi ilmiah Kerajaan: Plantae Divisi: Magnoliophyta Kelas: Magnoliopsida Ordo: Arecales Famili: Myrsinaceae Genus: Ardisia Spesies: A. crispa Nama binomial Ardisia crispa Mata ayam atau juga dikenali sebagai mata pelanduk adalah tumbuhan renek yang mempunyai daun yang memanjang dan bergeligih. Tumbuhan ini merupakan sejenis tumbuhan tropikal. Nama sainsnya Ardisia crispa. Pokok Mata Pelanduk/Mata Ayam. Pengidentifikasi taksonArdisia crispa Wikidata: Q11294922 Wikispecie...

 

2018 studio album by Pavlov's DogProdigal DreamerArtwork based on A Jack in Office, a painting by Edwin Landseer.[2]Studio album by Pavlov's DogReleasedDecember 7, 2018[1]StudioPan Galactic Studios, St. LouisGenreProgressive rock, art rockLength59:05LabelRockville MusicProducerPaul Hennerich, David Surkamp, Sara SurkampPavlov's Dog chronology House Broken(2016) Prodigal Dreamer(2018) Audio sampleParisfilehelp Professional ratingsReview scoresSourceRatingDecibel Geekfav...

 

Европейская сардина Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеГруппа:Костные рыбыКласс:Лучепёрые рыбыПодкласс:Новопёры...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. As-SamhudiAs-SamhudiGelarAsy-SyarifNamaAs-SamhudiKebangsaanMamlukEtnisArabWilayah aktifMadinahJabatanMuftiMazhab FikihSyafi'iMazhab AkidahSunniMinat utamaSejarah Asy-Syarif al-Imam Nuruddin Abu al-Hasan Ali bin Abdullah bin Ahmad bin Ali al-Hasani as-...

 

Passport issued to citizens of Grenada Grenadian passportFront cover of a non-biometric Grenadian passportTypePassportIssued by GrenadaFirst issued4 August 2006 (G series (non-biometric) passports)17 July 2018[1] (GZ series (biometric) passports)PurposeIdentificationEligibilityGrenadian citizenshipExpiration5 years after issuance. The Grenadian passport is a travel document issued to citizens of Grenada, in accordance with the Grenadian Citizenship Act of 1976 (Cap 54) and t...

 

Not to be confused with Christian Democratic Party of Ukraine. Political party in Ukraine Christian Democratic Union Християнсько-Демократичний СоюзLeaderOlexander Chernenko (Party chairman)[1][2]Founded1997[1]HeadquartersVul. B. Khmelnytskoho 3-A, UA-01001 KyivIdeology Christian democracy Conservatism Political positionCentre-rightEuropean affiliationEuropean Christian Political MovementInternational affiliationCentrist Democrat I...

Town on the Red Sea coast of Egypt City in Red Sea, EgyptSafaga سفاجاCityOverview of SafagaSafagaLocation in EgyptCoordinates: 26°44′N 33°56′E / 26.733°N 33.933°E / 26.733; 33.933CountryEgyptGovernorateRed SeaArea[1] • Total5,285 km2 (2,041 sq mi)Elevation[1]23 m (75 ft)Population (2021)[1] • Total55,299 • Density10/km2 (27/sq mi)Time zoneUTC+2 (EST) Port Safaga,...

 

Сельское поселение России (МО 2-го уровня)Новотитаровское сельское поселение Флаг[d] Герб 45°14′09″ с. ш. 38°58′16″ в. д.HGЯO Страна  Россия Субъект РФ Краснодарский край Район Динской Включает 4 населённых пункта Адм. центр Новотитаровская Глава сельского пос�...

 

Parley P. Pratt's volume of original poetry, published in 1840. Mormon poetry (or Latter Day Saint poetry) is poetry written by members of the Church of Jesus Christ of Latter-day Saints (LDS Church) about spiritual topics or themes. Mormons have a long history of writing poetry relevant to their religious beliefs and to the Mormon experience. Mormon poetry, like Mormon fiction, has experienced different periods throughout the LDS Church's history, including the home literature period and the...

此條目可能包含不适用或被曲解的引用资料,部分内容的准确性无法被证實。 (2023年1月5日)请协助校核其中的错误以改善这篇条目。详情请参见条目的讨论页。 各国相关 主題列表 索引 国内生产总值 石油储量 国防预算 武装部队(军事) 官方语言 人口統計 人口密度 生育率 出生率 死亡率 自杀率 谋杀率 失业率 储蓄率 识字率 出口额 进口额 煤产量 发电量 监禁率 死刑 国债 ...

 

British television series For other books, series and films in the Tracy Beaker franchise, see The Story of Tracy Beaker (franchise). The Story of Tracy BeakerThe Story of Tracy Beaker title cardCreated byJacqueline Wilson (Books)Based onThe Story of Tracy BeakerStarringList of Tracy Beaker series charactersOpening themeSomeday sung by Keisha WhiteCountry of originUnited KingdomOriginal languageEnglishNo. of series5No. of episodes120 + 5 specials (list of episodes)ProductionExecutive producer...

 

「クイズショー」はこの項目へ転送されています。1994年制作の映画については「クイズ・ショウ」をご覧ください。 この記事には複数の問題があります。改善やノートページでの議論にご協力ください。 出典がまったく示されていないか不十分です。内容に関する文献や情報源が必要です。(2018年5月) 独自研究が含まれているおそれがあります。(2011年5月)出典�...

Ethnic group Chinese people in East TimorA mix wedding of East Timorese and Chinese Hakka people in East Timor, where the four flower girls and the mother of the bride on the far right are of Chinese Hakka descent.Total population4,000[1]—20,000 (Historically)Regions with significant populations East Timor AustraliaLanguagesPortuguese, Indonesian, Chinese (Hakka, Cantonese, Mandarin), Tetum, MacaneseReligionConfucianism, Buddhism, Taoism, CatholicismRelated ethnic groupsC...

 

زاوية نقطة الاعتدال تظهر باللون الأخضر. زاوية نقطة الاعتدال أو خط طول العقدة الصاعدة (بالإنجليزية: Longitude of the ascending node)‏ (☊ أو Ω) أحد العناصر المدارية التي تصف مدار جرم سماوي ما في الفضاء.وهو البعد بين العقدة الصاعدة ومبتدأ خط الطول على المستوى المرجعي انظر الصورة.والعقد المد...