A dense-in-itself closed set is called a perfect set. (In other words, a perfect set is a closed set without isolated point.)
The notion of dense set is distinct from dense-in-itself. This can sometimes be confusing, as "X is dense in X" (always true) is not the same as "X is dense-in-itself" (no isolated point).
Examples
A simple example of a set that is dense-in-itself but not closed (and hence not a perfect set) is the set of irrational numbers (considered as a subset of the real numbers). This set is dense-in-itself because every neighborhood of an irrational number contains at least one other irrational number . On the other hand, the set of irrationals is not closed because every rational number lies in its closure. Similarly, the set of rational numbers is also dense-in-itself but not closed in the space of real numbers.
The above examples, the irrationals and the rationals, are also dense sets in their topological space, namely . As an example that is dense-in-itself but not dense in its topological space, consider . This set is not dense in but is dense-in-itself.
Properties
A singleton subset of a space can never be dense-in-itself, because its unique point is isolated in it.
The dense-in-itself subsets of any space are closed under unions.[5] In a dense-in-itself space, they include all open sets.[6] In a dense-in-itself T1 space they include all dense sets.[7] However, spaces that are not T1 may have dense subsets that are not dense-in-itself: for example in the dense-in-itself space with the indiscrete topology, the set is dense, but is not dense-in-itself.
The closure of any dense-in-itself set is a perfect set.[8]
In general, the intersection of two dense-in-itself sets is not dense-in-itself. But the intersection of a dense-in-itself set and an open set is dense-in-itself.