Darboux's theorem

In differential geometry, a field in mathematics, Darboux's theorem is a theorem providing a normal form for special classes of differential 1-forms, partially generalizing the Frobenius integration theorem. It is named after Jean Gaston Darboux[1] who established it as the solution of the Pfaff problem.[2]

It is a foundational result in several fields, the chief among them being symplectic geometry. Indeed, one of its many consequences is that any two symplectic manifolds of the same dimension are locally symplectomorphic to one another. That is, every -dimensional symplectic manifold can be made to look locally like the linear symplectic space with its canonical symplectic form.

There is also an analogous consequence of the theorem applied to contact geometry.

Statement

Suppose that is a differential 1-form on an -dimensional manifold, such that has constant rank . Then

  • if everywhere, then there is a local system of coordinates in which
  • if everywhere, then there is a local system of coordinates in which

Darboux's original proof used induction on and it can be equivalently presented in terms of distributions[3] or of differential ideals.[4]

Frobenius' theorem

Darboux's theorem for ensures that any 1-form such that can be written as in some coordinate system .

This recovers one of the formulation of Frobenius theorem in terms of differential forms: if is the differential ideal generated by , then implies the existence of a coordinate system where is actually generated by .[4]

Darboux's theorem for symplectic manifolds

Suppose that is a symplectic 2-form on an -dimensional manifold . In a neighborhood of each point of , by the Poincaré lemma, there is a 1-form with . Moreover, satisfies the first set of hypotheses in Darboux's theorem, and so locally there is a coordinate chart near in which

Taking an exterior derivative now shows

The chart is said to be a Darboux chart around .[5] The manifold can be covered by such charts.

To state this differently, identify with by letting . If is a Darboux chart, then can be written as the pullback of the standard symplectic form on :

A modern proof of this result, without employing Darboux's general statement on 1-forms, is done using Moser's trick.[5][6]

Comparison with Riemannian geometry

Darboux's theorem for symplectic manifolds implies that there are no local invariants in symplectic geometry: a Darboux basis can always be taken, valid near any given point. This is in marked contrast to the situation in Riemannian geometry where the curvature is a local invariant, an obstruction to the metric being locally a sum of squares of coordinate differentials.

The difference is that Darboux's theorem states that can be made to take the standard form in an entire neighborhood around . In Riemannian geometry, the metric can always be made to take the standard form at any given point, but not always in a neighborhood around that point.

Darboux's theorem for contact manifolds

Another particular case is recovered when ; if everywhere, then is a contact form. A simpler proof can be given, as in the case of symplectic structures, by using Moser's trick.[7]

The Darboux-Weinstein theorem

Alan Weinstein showed that the Darboux's theorem for sympletic manifolds can be strengthened to hold on a neighborhood of a submanifold:[8]

Let be a smooth manifold endowed with two symplectic forms and , and let be a closed submanifold. If , then there is a neighborhood of in and a diffeomorphism such that .

The standard Darboux theorem is recovered when is a point and is the standard symplectic structure on a coordinate chart.

This theorem also holds for infinite-dimensional Banach manifolds.

See also

References

  1. ^ Darboux, Gaston (1882). "Sur le problème de Pfaff" [On the Pfaff's problem]. Bull. Sci. Math. (in French). 6: 14–36, 49–68. JFM 05.0196.01.
  2. ^ Pfaff, Johann Friedrich (1814–1815). "Methodus generalis, aequationes differentiarum partialium nec non aequationes differentiales vulgates, ultrasque primi ordinis, inter quotcunque variables, complete integrandi" [A general method to completely integrate partial differential equations, as well as ordinary differential equations, of order higher than one, with any number of variables]. Abhandlungen der Königlichen Akademie der Wissenschaften in Berlin (in Latin): 76–136.
  3. ^ Sternberg, Shlomo (1964). Lectures on Differential Geometry. Prentice Hall. pp. 140–141. ISBN 9780828403160.
  4. ^ a b Bryant, Robert L.; Chern, S. S.; Gardner, Robert B.; Goldschmidt, Hubert L.; Griffiths, P. A. (1991). "Exterior Differential Systems". Mathematical Sciences Research Institute Publications. doi:10.1007/978-1-4613-9714-4. ISSN 0940-4740.
  5. ^ a b McDuff, Dusa; Salamon, Dietmar (2017-06-22). Introduction to Symplectic Topology. Vol. 1. Oxford University Press. doi:10.1093/oso/9780198794899.001.0001. ISBN 978-0-19-879489-9.
  6. ^ Cannas Silva, Ana (2008). Lectures on Symplectic Geometry. Springer. doi:10.1007/978-3-540-45330-7. ISBN 978-3-540-42195-5.
  7. ^ Geiges, Hansjörg (2008). An Introduction to Contact Topology. Cambridge Studies in Advanced Mathematics. Cambridge: Cambridge University Press. pp. 67–68. doi:10.1017/cbo9780511611438. ISBN 978-0-521-86585-2.
  8. ^ Weinstein, Alan (1971). "Symplectic manifolds and their Lagrangian submanifolds". Advances in Mathematics. 6 (3): 329–346. doi:10.1016/0001-8708(71)90020-X.

Read other articles:

Hidrazina Rumus kerangka hidrazin, memunculkan semua hidrogen Model ruang terisi hidrazin Stereo, rumus kerangka hidrazin, memunculkan semua hidrogen Model bola dan tongkat hidrazin Hidrazin hidrat Nama Nama IUPAC (sistematis) Hydrazine[2] Nama lain Diamina;[1] Diazana;[2] Tetrahidridodinitrogen (N—N) Penanda Nomor CAS 302-01-2 Y Model 3D (JSmol) Gambar interaktif 3DMet {{{3DMet}}} Referensi Beilstein 878137 ChEBI CHEBI:15571 Y ChEMBL ChEMBL1237174 N ...

 

HotteokNama KoreaHangul호떡 Alih AksarahotteokMcCune–Reischauerhottŏk Hotteok adalah panekuk berisi pasta kacang, dijual sebagai makanan jajanan Korea Selatan. Kue ini digoreng dengan minyak yang cukup banyak, enak dimakan sewaktu masih hangat sehingga populer sebagai kudapan sewaktu musim dingin. Kue ini harganya relatif murah, bentuknya bulat dan tebal seperti panekuk dan diisi dengan pasta kacang manis. Nama ho-tteok berasal dari kata ho (胡; suku bangsa di Cina Barat/Utara) dan tteo...

 

39 Arietis Classificazionegigante arancione Classe spettraleK1.5III C ~ Distanza dal Sole181 anni luce CostellazioneAriete Redshift-0,000052 ± 0,000001 Coordinate(all'epoca J2000.0) Ascensione retta02h 47m 54,5407s Declinazione+29° 14′ 49,625″ Lat. galattica-27,1043° Long. galattica151,4186° Dati fisiciRaggio medio11,75 R⊙ Massa1,39 M⊙ Acceleraz. di gravità in superficie2,44 logg Temperaturasuperficiale4570,88 K (media) Metallicità95% del Sole...

Untuk persidangan pidana pada Pengadilan Negeri Superior Los Angeles County yang mengilhami serial ini, lihat Kasus pembunuhan O. J. Simpson. The People v. O. J. Simpson: American Crime StoryPoster promosiDibintangioleh Sterling K. Brown Kenneth Choi Christian Clemenson Cuba Gooding Jr. Bruce Greenwood Nathan Lane Sarah Paulson David Schwimmer John Travolta Courtney B. Vance Negara asalAmerika SerikatJumlah episode10RilisSaluran asliFXTanggal tayang2 Februari (2016-02-02) –5 April...

 

Federal city in Russia This article is about the Russian city. For the American city, see St. Petersburg, Florida. For other uses, see Saint Petersburg (disambiguation). Leningrad and Petrograd redirect here. For other uses, see Leningrad (disambiguation) and Petrograd (disambiguation). Federal city in Northwestern, RussiaSaint Petersburg Санкт-ПетербургFederal cityClockwise from top: the Winter Palace; Peter and Paul Cathedral; the General Staff Building; the Moyka River from t...

 

Danish filmmaking movement Dogme redirects here. For the language teaching method, see Dogme language teaching. Dogme 95Years active1995–2005LocationInternational, started in DenmarkMajor figuresLars von Trier, Thomas Vinterberg, Kristian Levring, Søren Kragh-Jacobsen, Jean-Marc Barr, Harmony KorineInfluencesRealism, French New WaveInfluencedMumblecore, New Puritans, Remodernist, Philippine New Wave Dogma 95 (Danish: Dogme 95) is a 1995 avant-garde filmmaking movement founded by the Danish...

Cet article est une ébauche concernant une personnalité américaine. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Jim GettysJim Gettys à la linux.conf.au, 2006BiographieNaissance 15 octobre 1953 (70 ans)Nationalité américaineFormation Massachusetts Institute of TechnologyActivités Ingénieur, informaticien, programmeurmodifier - modifier le code - modifier Wikidata Jim Gettys est un développeur am...

 

Pour les articles homonymes, voir Faux. Faux-Vésigneul Paysage de la plaine champenoise, à l'est du village. Administration Pays France Région Grand Est Département Marne Arrondissement Châlons-en-Champagne Intercommunalité Communauté de communes de la Moivre à la Coole Maire Mandat Jean-Christophe Mangeart 2020-2026 Code postal 51320 Code commune 51244 Démographie Populationmunicipale 241 hab. (2021 ) Densité 6,1 hab./km2 Géographie Coordonnées 48° 46′ 52�...

 

U.S. government department regulating energy production and nuclear material handling USDOE redirects here. For the U.S. Department of Education, see United States Department of Education. United States Department of EnergySeal of the U.S. Department of EnergyFlag of the U.S. Department of EnergyJames V. Forrestal Building, Department headquartersAgency overviewFormedAugust 4, 1977; 46 years ago (1977-08-04)Preceding agenciesFederal Energy Administration (FEA)Energy Research...

Venkatesh (aktor) beralih ke halaman ini. Untuk aktor lainnya yang bermarga Venkatesh, lihat Venkatesh (disambiguasi). Daggubati VenkateshVenkatesh di Acara pembukaan CCL - Musim 3LahirVenkatesh Daggubati13 Desember 1960 (umur 63)Chennai, Tamil Nadu, IndiaTempat tinggalFilm Nagar, Hyderabad, Telangana, IndiaNama lainVenkyVictory Venkatesh Sankranti StarAlmamaterKolese Loyola, ChennaiInstitut Pembelajaran Internasional MontereyPekerjaanAktorTahun aktif1986–sekarangSuami/istriN...

 

Type of musical ornamentation For other uses, see Grace note (disambiguation). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Grace note – news · newspapers · books · scholar · JSTOR (December 2009) (Learn how and when to remove this message) Acciaccatura notation Various interpretations of grace notes A gr...

 

History book by Irwin Unger The Greenback Era First editionAuthorIrwin UngerCountryUnited StatesLanguageEnglishGenreNon-fictionPublisherACLS History E-Book Project and Princeton University PressPublication date1964Pages467ISBN978-1597401685 The Greenback Era: A Social and Political History of American Finance, 1865-1879 is a nonfiction history book by American historian Irwin Unger, published in 1964 by Princeton University Press. It won the 1965 Pulitzer Prize for History.[1] It is a...

Worship of or belief in multiple deities Egyptian gods in the Carnegie Museum of Natural History Part of a series onTheism Types of faith Agnosticism Apatheism Atheism Classical theism Deism Henotheism Ietsism Ignosticism Monotheism Monism Dualism Monolatry Kathenotheism Omnism Pandeism Panentheism Pantheism Polytheism Transtheism Specific conceptions Brahman Creator Demiurge Deus Father Form of the Good God Great Architect Monad Mother Summum bonum Supreme Being Sustainer The Lord Trinity Ta...

 

United States federal law This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article is written like a personal reflection, personal essay, or argumentative essay that states a Wikipedia editor's personal feelings or presents an original argument about a topic. Please help improve it by rewriting it in an encyclopedic style. (May 2021) (Learn how and when to remove this message) This ar...

 

17-та авіапольова дивізія (Третій Рейх)Luftwaffen Feld Division 1717. Feld-Division (L)Прапор командира дивізії ЛюфтваффеНа службі1 грудня 1942 — 27 вересня 1944Країна Третій РейхНалежність ВермахтВид Люфтваффе Сухопутні військаРольпіхотаЧисельністьавіапольова дивізіяУ складі...

Region of the body between the genitals and anus Not to be confused with Peritoneum. PerineumThe human male perineum (left) and human female perineum (right)The muscles of the male (left) and female (right) perineumDetailsPronunciation/ˌpɛrɪˈniːəm/;[1]SystemMusculoskeletal systemArteryPerineal artery, dorsal artery of the penis and deep artery of the penisNervePerineal nerve, posterior scrotal nerves, dorsal nerve of the penis or dorsal nerve of the clitorisLymphPrimarily superf...

 

Pour les articles homonymes, voir Éperluette. Pour le disque d'Ayumi Hamasaki, voir & (album d'Ayumi Hamasaki). Pour le disque de Julien Doré, voir & (album). L’esperluette ou esperluète (nom féminin), également appelée éperluette, perluette, perluète, « et » commercial ou « et » américain — en anglais : ampersand —, désigne le logogramme &. Elle résulte de la ligature des lettres de la conjonction de coordination « et...

 

Pour les articles homonymes, voir Occupation de la France par l'Allemagne. À la suite de la guerre franco-allemande de 1870, le quart Nord-Est de la France a subi, de 1870 à 1873, une occupation par l’armée allemande d’une durée variable, de quelques mois au sud de la Loire, prolongée jusqu'à 3 ans pour certaines parties de l’Est jusqu'au paiement de l'indemnité de 5 milliards de francs exigée par le traité de Francfort. Étendue Après l’invasion des régions de l’Es...

Aircraft with an undercarriage capable of operating from water surfaces For the sitcom episode, see Seaplane! A Grumman G-111 Albatross amphibious flying boat landing OS2U Kingfisher in 1944. Seaplanes were commonly used in World War II for reconnaissance and search and rescue. They were launched from ships or seaplane tenders, or could take off from water in the right conditions. A seaplane is a powered fixed-wing aircraft capable of taking off and landing (alighting) on water.[1] Se...

 

Mother of the Wright brothers (1831–1889) Susan Catherine Koerner WrightKoerner Wright circa 1888BornSusan Catherine KoernerApril 30, 1831Hillsboro, Loudoun County, VirginiaDiedJuly 4, 1889(1889-07-04) (aged 58)Dayton, OhioResting placeWoodland Cemetery and Arboretum, Dayton, Montgomery County, OhioKnown forMother of the Wright brothersSpouseMilton WrightChildrenReuchlin Wright Lorin Wright Wilbur Wright Otis Wright Ida Wright Orville Wright Katharine WrightParent(s)Catherine Frey...