where is the digraph resulting from deletion of vertex v and all edges beginning or ending at v.
If G is not strongly connected, then r(G) is equal to the maximum cycle rank among all strongly connected components of G.
The tree-depth of an undirected graph has a very similar definition, using undirected connectivity and connected components in place of strong connectivity and strongly connected components.
The cycle rank of a directed acyclic graph is 0, while a complete digraph of order n with a self-loop at
each vertex has cycle rank n. Apart from these, the cycle rank of a few other digraphs is known: the undirected path of order n, which possesses a symmetric edge relation and no self-loops, has cycle rank (McNaughton 1969). For the directed -torus , i.e., the cartesian product of two directed circuits of lengths m and n, we have
and for m ≠ n (Eggan 1963, Gruber & Holzer 2008).
Computing the cycle rank
Computing the cycle rank is computationally hard: Gruber (2012) proves that the corresponding decision problem is NP-complete, even for sparse digraphs of maximum outdegree at most 2. On the positive side, the problem is solvable in time on digraphs of maximum outdegree at most 2, and in time on general digraphs. There is an approximation algorithm with approximation ratio .
a set of labeled edges δ, referred to as transition relation: Q × (Σ ∪{ε}) × Q. Here ε denotes the empty word.
an initial state q0 ∈ Q
a set of states F distinguished as accepting statesF ⊆ Q.
A word w ∈ Σ* is accepted by the ε-NFA if there exists a directed path from the initial state q0 to some final state in F using edges from δ, such that the concatenation of all labels visited along the path yields the word w. The set of all words over Σ* accepted by the automaton is the language accepted by the automaton A.
When speaking of digraph properties of a nondeterministic finite automaton A with state set Q, we naturally address the digraph with vertex set Q induced by its transition relation. Now the theorem is stated as follows.
Cholesky factorization in sparse matrix computations
Another application of this concept lies in sparse matrix computations, namely for using nested dissection to compute the Cholesky factorization of a (symmetric) matrix in parallel. A given sparse -matrix M may be interpreted as the adjacency matrix of some symmetric digraph G on n vertices, in a way such that the non-zero entries of the matrix are in one-to-one correspondence with the edges of G. If the cycle rank of the digraph G is at most k, then the Cholesky factorization of M can be computed in at most k steps on a parallel computer with processors (Dereniowski & Kubale 2004).
Eisenstat, Stanley C.; Liu, Joseph W. H. (2005), "The theory of elimination trees for sparse unsymmetric matrices", SIAM Journal on Matrix Analysis and Applications, 26 (3): 686–705, doi:10.1137/S089547980240563X.