Curtis–Hedlund–Lyndon theorem

The Curtis–Hedlund–Lyndon theorem is a mathematical characterization of cellular automata in terms of their symbolic dynamics. It is named after Morton L. Curtis, Gustav A. Hedlund, and Roger Lyndon; in his 1969 paper stating the theorem, Hedlund credited Curtis and Lyndon as co-discoverers.[1] It has been called "one of the fundamental results in symbolic dynamics".[2]

The theorem states that a function from a shift space to itself represents the transition function of a one-dimensional cellular automaton if and only if it is continuous (with respect to the Cantor topology) and equivariant (with respect to the shift map). More generally, it asserts that the morphisms between any two shift spaces (that is, continuous mappings that commute with the shift) are exactly those mappings which can be defined uniformly by a local rule.

The version of the theorem in Hedlund's paper applied only to one-dimensional finite automata, but a generalization to higher dimensional integer lattices was soon afterwards published by Richardson (1972),[3] and it can be even further generalized from lattices to discrete groups. One important consequence of the theorem is that, for reversible cellular automata, the reverse dynamics of the automaton can also be described by a cellular automaton.

Definitions

An alphabet is any finite set of symbols, which may be thought of as the states of the cells in a cellular automaton. A configuration is a bi-infinite sequence of symbols from the alphabet:

..., x−2, x−1, x0, x1, x2, ....

A position in a configuration is an integer, the index of one of the symbols in the sequence; the positions may be thought of as the cells of a cellular automaton. A pattern is a finite set of positions and an assignment of symbols to each of these positions.

The shift space is the set of all possible configurations over a given alphabet. It may be given the structure of a topological space according to the Cantor topology, in which the fundamental open sets are the sets of configurations that match any single pattern and the open sets are arbitrary unions of fundamental open sets. In this topology, a function f from configurations to configurations is continuous if, for any fixed pattern p defining a fundamental open set P, the set f−1(P) of configurations mapped by f into P can itself be described by a (possibly infinite) set S of patterns, with the property that a configuration belongs to f−1(P) if and only if it matches a pattern in S.

The shift map is a particular continuous function s on the shift space that transforms a configuration x into a new configuration y in which each symbol is shifted one position over from its previous position: that is, for every integer i, yi = xi − 1. A function f is equivariant under the shift map if the transformation on configurations described by f commutes with the shift map; that is, for every configuration x, it must be the case that f(s(x)) = s(f(x)). Intuitively, this means that every position of the configuration is updated by f using the same rule as every other position.

A cellular automaton is defined by a rule for computing the new value of each position in a configuration based only on the values of cells in a prior-fixed finite neighborhood surrounding the position, with all positions of the configuration being updated simultaneously based on the same update rule. That is, the new value of a position is a function only of the values of the cells in its neighborhood rather than depending more generally on an unbounded number of cells of the previous configuration. The function f that uses this rule to map a configuration of the cellular automaton into its successor configuration is necessarily equivariant with respect to the shift map, by the assumption that all positions use the same update rule. It is also necessarily continuous in the Cantor topology: if p is a fixed pattern, defining a fundamental open set P, then f−1(P) is defined by a finite set of patterns, the assignments to cells in the neighborhood of p that cause f to produce p. The Curtis–Hedlund–Lyndon theorem states that these two properties are sufficient to define cellular automata: every continuous equivariant function is the update rule of a cellular automaton.

Proof

Ceccherini-Silberstein and Coornaert provide the following proof of the Curtis–Hedlund–Lyndon theorem.[4]

Suppose f is a continuous shift-equivariant function on the shift space. For each configuration x, let p be the pattern consisting of the single symbol that appears at position zero of f(x). By continuity of f, there must exist a finite pattern q in x such that, if the positions outside q are changed arbitrarily but the positions within q are fixed to their values in x, then the result of applying f remains the same at position zero. Equivalently, there must exist a fundamental open set Qx such that x belongs to Qx and such that for every configuration y in Qx, f(x) and f(y) have the same value at position zero. These fundamental open sets Qx (for all possible configurations x) form an open cover of the shift space. However, the shift space is a compact space: it is a product of finite topological spaces with the alphabet as their points, so compactness follows from Tychonoff's theorem. By compactness, every open cover has a finite subcover. The finite set of positions appearing in this finite subcover may be used as the neighborhood of position zero in a description of f as a cellular automaton rule.

The same proof applies more generally when the set of integer positions is replaced by any discrete group G, the space of configurations is replaced by the set of functions from G to a finite alphabet, and shift-equivariance is replaced by equivariance under the action of G on itself. In particular, it applies to cellular automata defined on an integer grid of any dimension.

Counterexample for infinite alphabets

Consider the space of bi-infinite sequences of integers, and define a function from this space to itself according to the rule that, if f(x) = y, then for every position i, yi = xi + xi. This rule is the same for each position, so it is shift-equivariant. And it can be shown to be continuous according to the Cantor topology: for each finite pattern p in y, there is a pattern in x with at most twice as many positions that forces to generate p, consisting of the cells in p together with the cells whose values are copied into p. However, despite being continuous and equivariant, is not a cellular automaton rule, because the value of any cell can potentially depend on the value of any other cell rather than only depending on the cells in any prior-fixed finite neighborhood.[4]

Application to reversible cellular automata

A cellular automaton is said to be reversible when every configuration of the automaton has exactly one predecessor. It follows by a compactness argument that the function mapping each configuration to its predecessor is itself continuous in the shift space, and it is clearly also shift-invariant. Therefore, by the Curtis–Hedlund–Lyndon theorem, the time-reversed dynamics of the cellular automaton may itself be generated using a different cellular automaton rule.[3] However, the neighborhood of a cell in the reverse automaton may be significantly larger than the neighborhood of the same cell in the forward automaton.[5][6]

Generalization

One can generalize the definition of cellular automaton to those maps that are defined by rules for computing the new value of each position in a configuration based on the values of cells in a finite but variable neighborhood surrounding the position. In this case, as in the classical definition, the local rule is the same for all cells, but the neighborhood is also a function of the configuration around the position.

The counterexample given above for a continuous and shift-equivariant map which is not a classical cellular automaton, is an example of a generalized cellular automaton. When the alphabet is finite, the definition of generalized cellular automata coincides with the classical definition of cellular automata due to the compactness of the shift space.

Generalized cellular automata were proposed by Sobottka & Gonçalves (2017) [7] where it was proved they correspond to continuous shift-equivariant maps.

See also

References

  1. ^ Hedlund, Gustav A. (1969), "Endomorphisms and Automorphisms of the Shift Dynamical Systems", Mathematical Systems Theory, 3 (4): 320–375, doi:10.1007/BF01691062, S2CID 21803927.
  2. ^ Šunić, Zoran (2014), "Cellular automata and groups, by Tullio Ceccherini-Silberstein and Michel Coornaert (book review)", Bulletin of the American Mathematical Society, 51 (2): 361–366, doi:10.1090/S0273-0979-2013-01425-3.
  3. ^ a b Richardson, Daniel (1972), "Tessellations with local transformations", Journal of Computer and System Sciences, 6 (5): 373–388, doi:10.1016/S0022-0000(72)80009-6, MR 0319678.
  4. ^ a b Ceccherini-Silberstein, Tullio; Coornaert, Michel (2010), "Theorem 1.8.1 (Curtis–Hedlund theorem)", Cellular Automata and Groups, Springer Monographs in Mathematics, Springer-Verlag, p. 20, ISBN 978-3-642-14033-4.
  5. ^ Margenstern, Maurice (2007), Cellular Automata in Hyperbolic Spaces - Tome I, Volume 1, Archives contemporaines, p. 134, ISBN 978-2-84703-033-4.
  6. ^ Kari, Jarkko (2005), "Reversible cellular automata" (PDF), Developments in Language Theory, Lecture Notes in Computer Science, vol. 3572, Springer-Verlag, pp. 2–23, doi:10.1007/11505877_5, ISBN 978-3-540-26546-7.
  7. ^ Sobottka, Marcelo; Gonçalves, Daniel (2017), "A note on the definition of sliding block codes and the Curtis-Hedlund-Lyndon Theorem", Journal of Cellular Automata, 12 (3–4): 209–215, arXiv:1507.02180

Read other articles:

Sukhoi Su-1 atau I-330 (Rusia: Сухой Су-1) adalah prototipe pesawat tempur ketinggian tinggi Soviet dibangun pada awal Perang Dunia II. Sebuah versi perbaikan, dinamakan Su-3 (I-360), juga dibangun dan diuji pada tahun berikutnya. Versi keduanya itu diproduksi massal. Pavel O Sukhoi mendirikan OKB (Biro Desan Eksperimental) sendiri pada Desember 1938, dan pada awal tahun berikutnya dia menyetujui sebuah tugas untuk mendesain pesawat tempur altitude-tinggi satu-kursi canggih. Awalnya de...

 

 

K. M. MunshiMunshi pada usia awal enam puluh tahunan. Gubernur Uttar Pradesh ke-2Masa jabatan2 Juni 1952 – 9 Juni 1957Ketua MenteriGovind Ballabh PantSampurnanand PendahuluHomi ModyPenggantiVarahagiri Venkata GiriMenteri Pertanian ke-3Masa jabatan13 Mei 1950 – 13 Mei 1952Perdana MenteriJawaharlal Nehru PendahuluJairamdas DaulatramPenggantiRafi Ahmed Kidwai Informasi pribadiLahir(1887-12-30)30 Desember 1887Bharuch, Kepresidenan Bombay, India BritaniaMeninggal8 Februar...

 

 

Questa voce sugli argomenti università degli Stati Uniti d'America e Wyoming è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Università del Wyoming UbicazioneStato Stati Uniti CittàLaramie Dati generaliSoprannomeCowboys e Coygirls Fondazione1886 TipoUniversità pubblica RettoreDick McGinty Studenti13 992 Dipendenti2 997 Colori          Marrone e Oro Mappa di localizzazione Sito web Modifica dat...

British prince (born 1935) For other people named Prince Edward, see Prince Edward (disambiguation). Prince EdwardDuke of Kent (more)Edward in 2014BornPrince Edward of Kent (1935-10-09) 9 October 1935 (age 88)3 Belgrave Square, London, EnglandSpouse Katharine Worsley ​(m. 1961)​Issue George Windsor, Earl of St Andrews Lady Helen Taylor Lord Nicholas Windsor NamesEdward George Nicholas Paul Patrick[notes 1]HouseWindsorFatherPrince George, Duke of KentM...

 

 

Suillus bovinus S. bovinus Hutan pinus, Galicia Klasifikasi ilmiah Kerajaan: Fungi Divisi: Basidiomycota Kelas: Agaricomycetes Ordo: Boletales Famili: Suillaceae Genus: Suillus Spesies: S. bovinus Nama binomial Suillus bovinus(L.) Roussel (1806) Sinonim[1] Boletus bovinus L. (1753) Agaricus bovinus (L.) Lam. (1783) Ixocomus bovinus (L.) Quél. (1888) Mariaella bovina (L.) Šutara (1987) Suillus bovinusfloat Karakteristik mikologiHimenium berbentuk pori Tudung datar atau tudung c...

 

 

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт�...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Maret 2016. SMA Negeri 4 SamarindaInformasiJurusan atau peminatanIPA IPSRentang kelasX IPA, X IPS, X Bahasa, XI IPA, XI IPS, XI Bahasa, XII IPA, XII IPS, XII BahasaKurikulumKurikulum Tingkat Satuan PendidikanAlamatLokasiJalan KH. Harun Nafsi 30, Samarinda, Kalimanta...

 

 

Global steel company SSAB ABCompany typePublicly traded AktiebolagTraded asNasdaq Stockholm: SSAB AISINSE0000171100[1]SE0000120669[2]IndustrySteelFounded1978; 46 years ago (1978)HeadquartersStockholm, SwedenKey people Lennart Evrell (Chairman) Martin Lindqvist (President and CEO) Revenue 95.89 billion kr (2021)[3]Operating income 18.84 billion kr (2021)[3]Net income 14.67 billion kr (2021)[3]Total assets 112.02 billion kr (2021)&#...

 

 

British actor and singer (born 1984) Luke TreadawayTreadaway in Ordeal by Innocence 2018BornLuke Antony Newman Treadaway (1984-09-10) 10 September 1984 (age 39)Exeter, Devon, EnglandAlma materLondon Academy of Music and Dramatic ArtOccupationsActorsingerYears active2005–presentRelativesHarry Treadaway (twin brother) Luke Antony Newman Treadaway[1] (born 10 September 1984) is a British actor and singer. He won an Olivier Award for Best Leading Actor for his performance...

Sceaux 行政国 フランス地域圏 (Région) イル=ド=フランス地域圏県 (département) オー=ド=セーヌ県郡 (arrondissement) アントニー郡小郡 (canton) 小郡庁所在地INSEEコード 92071郵便番号 92330市長(任期) フィリップ・ローラン(2008年-2014年)自治体間連合 (fr) メトロポール・デュ・グラン・パリ人口動態人口 19,679人(2007年)人口密度 5466人/km2住民の呼称 Scéens地理座標 北緯48度4...

 

 

Cycling race Cycling race 2018 Presidential Tour of Turkey2018 UCI World Tour, race 35 of 37Race detailsDates9–14 October 2018Stages6Distance948.6[1] km (589.4 mi)Winning time22h 26' 16Results  Winner  Eduard Prades (ESP) (Euskadi–Murias)  Second  Alexey Lutsenko (KAZ) (Astana)  Third  Nathan Haas (AUS) (Team Katusha–Alpecin)← 2017 2019 → The 2018 Presidential Tour of Turkey was a road cycling stage rac...

 

 

Baked pastry from Basilicata, Italy This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: U' pastizz 'rtunnar – news · newspapers · books · scholar · JSTOR (April 2024) U' pastizz 'rtunnarTypeTurnoverPlace of originItalyRegion or stateBasilicataMain ingredientsPork, eggs, cheese  Media: U' pasti...

此条目序言章节没有充分总结全文内容要点。 (2019年3月21日)请考虑扩充序言,清晰概述条目所有重點。请在条目的讨论页讨论此问题。 哈萨克斯坦總統哈薩克總統旗現任Қасым-Жомарт Кемелұлы Тоқаев卡瑟姆若马尔特·托卡耶夫自2019年3月20日在任任期7年首任努尔苏丹·纳扎尔巴耶夫设立1990年4月24日(哈薩克蘇維埃社會主義共和國總統) 哈萨克斯坦 哈萨克斯坦政府...

 

 

Військово-музичне управління Збройних сил України Тип військове формуванняЗасновано 1992Країна  Україна Емблема управління Військово-музичне управління Збройних сил України — структурний підрозділ Генерального штабу Збройних сил України призначений для планува...

 

 

Not to be confused with Varanasi–New Delhi Vande Bharat Express, India's 35th semi high-speed Vande Bharat Express train.Vande Bharat Express train route in India New Delhi - Varanasi JunctionVande Bharat ExpressOverviewService typeVande Bharat ExpressLocaleDelhi and Uttar PradeshFirst service15 February 2019; 5 years ago (2019-02-15)Current operator(s)Northern Railways (NR)RouteTerminiNew Delhi (NDLS)Varanasi Junction (BSB)Stops2Distance travelled759 km (472 mi)...

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Medical Household – news · newspapers · books · scholar · JSTOR (June 2021) An editor has perform...

 

 

This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: France women's national beach handball team – news · newspapers · books · scholar · JSTOR (March 2024) FranceInformationAssociationFrench Handball FederationCoachValérie NicolasColours Home Away ResultsWorld ChampionshipAppearances1 (First in 2018)Be...

 

 

Disambiguazione – Peru rimanda qui. Se stai cercando altri significati, vedi Peru (disambigua). Perù (dettagli) (dettagli) (ES) Firme y Feliz por la Unión(IT) Saldo e Felice per l'Unione Perù - Localizzazione Dati amministrativiNome completoRepubblica del Perù Nome ufficiale(ES) República del Perú(QU) Piruw Ripuwlika(AY) Piruw Suyu Lingue ufficialispagnolo, aymara e quechua Capitale Lima  (9.822.514 ab. / 2017) PoliticaForma di governoRepubblica presidenzi...

Hospital in Maoputasi County, American SamoaLBJ Tropical Medical CenterGeographyLocationFaga'alu, Maoputasi County, American SamoaCoordinates14°17′25″S 170°41′08″W / 14.2903°S 170.6855°W / -14.2903; -170.6855OrganisationTypeGeneralServicesEmergency departmentYesBeds150HistoryOpenedJune 6, 1968LinksWebsitelbjtmc.orgListsHospitals in American Samoa Lyndon B. Johnson Tropical Medical Center is the only hospital in American Samoa, and is located in Faga'alu, Ma...

 

 

Not to be confused with Chevrolet Bolt, also known as the Chevrolet Bolt EV. Motor vehicle Chevrolet Bolt EUVOverviewManufacturerGeneral MotorsProductionMay 2021[1] – November 2023Model years2022–20232026[2]Assembly Final assembly: GM Orion Assembly, Lake Orion, Michigan Battery/drivetrain, HVAC and instrument/infotainment systems: LG, Holland, Michigan & Hazel Park, Michigan Body and chassisClassSubcompact crossover SUVBody style5-door SUVLayoutFront-motor, ...