(4) Every countable family of closed subsets of X with an empty intersection has a finite subfamily with an empty intersection.
Proof of equivalence
(1) (2): Suppose (1) holds and A is an infinite subset of X without -accumulation point. By taking a subset of A if necessary, we can assume that A is countable.
Every has an open neighbourhood such that is finite (possibly empty), since x is not an ω-accumulation point. For every finite subset F of A define . Every is a subset of one of the , so the cover X. Since there are countably many of them, the form a countable open cover of X. But every intersect A in a finite subset (namely F), so finitely many of them cannot cover A, let alone X. This contradiction proves (2).
(2) (3): Suppose (2) holds, and let be a sequence in X. If the sequence has a value x that occurs infinitely many times, that value is an accumulation point of the sequence. Otherwise, every value in the sequence occurs only finitely many times and the set is infinite and so has an ω-accumulation pointx. That x is then an accumulation point of the sequence, as is easily checked.
(3) (1): Suppose (3) holds and is a countable open cover without a finite subcover. Then for each we can choose a point that is not in . The sequence has an accumulation point x and that x is in some . But then is a neighborhood of x that does not contain any of the with , so x is not an accumulation point of the sequence after all. This contradiction proves (1).
(4) (1): Conditions (1) and (4) are easily seen to be equivalent by taking complements.
For T1 spaces, countable compactness and limit point compactness are equivalent.
Every sequentially compact space is countably compact.[4] The converse does not hold. For example, the product of continuum-many closed intervals with the product topology is compact and hence countably compact; but it is not sequentially compact.[5]