Lindelöf space

In mathematics, a Lindelöf space[1][2] is a topological space in which every open cover has a countable subcover. The Lindelöf property is a weakening of the more commonly used notion of compactness, which requires the existence of a finite subcover.

A hereditarily Lindelöf space[3] is a topological space such that every subspace of it is Lindelöf. Such a space is sometimes called strongly Lindelöf, but confusingly that terminology is sometimes used with an altogether different meaning.[4] The term hereditarily Lindelöf is more common and unambiguous.

Lindelöf spaces are named after the Finnish mathematician Ernst Leonard Lindelöf.

Properties of Lindelöf spaces

  • Every compact space, and more generally every σ-compact space, is Lindelöf. In particular, every countable space is Lindelöf.
  • A Lindelöf space is compact if and only if it is countably compact.
  • Every second-countable space is Lindelöf,[5] but not conversely. For example, there are many compact spaces that are not second-countable.
  • A metric space is Lindelöf if and only if it is separable, and if and only if it is second-countable.[6]
  • Every regular Lindelöf space is normal.[7]
  • Every regular Lindelöf space is paracompact.[8]
  • A countable union of Lindelöf subspaces of a topological space is Lindelöf.
  • Every closed subspace of a Lindelöf space is Lindelöf.[9] Consequently, every Fσ set in a Lindelöf space is Lindelöf.
  • Arbitrary subspaces of a Lindelöf space need not be Lindelöf.[10]
  • The continuous image of a Lindelöf space is Lindelöf.[11]
  • The product of a Lindelöf space and a compact space is Lindelöf.[12]
  • The product of a Lindelöf space and a σ-compact space is Lindelöf. This is a corollary to the previous property.
  • The product of two Lindelöf spaces need not be Lindelöf. For example, the Sorgenfrey line is Lindelöf, but the Sorgenfrey plane is not Lindelöf.[13]
  • In a Lindelöf space, every locally finite family of nonempty subsets is at most countable.

Properties of hereditarily Lindelöf spaces

  • A space is hereditarily Lindelöf if and only if every open subspace of it is Lindelöf.[14]
  • Hereditarily Lindelöf spaces are closed under taking countable unions, subspaces, and continuous images.
  • A regular Lindelöf space is hereditarily Lindelöf if and only if it is perfectly normal.[15][16]
  • Every second-countable space is hereditarily Lindelöf.
  • Every countable space is hereditarily Lindelöf.
  • Every Suslin space is hereditarily Lindelöf.
  • Every Radon measure on a hereditarily Lindelöf space is moderated.

Example: the Sorgenfrey plane is not Lindelöf

The product of Lindelöf spaces is not necessarily Lindelöf. The usual example of this is the Sorgenfrey plane which is the product of the real line under the half-open interval topology with itself. Open sets in the Sorgenfrey plane are unions of half-open rectangles that include the south and west edges and omit the north and east edges, including the northwest, northeast, and southeast corners. The antidiagonal of is the set of points such that

Consider the open covering of which consists of:

  1. The set of all rectangles where is on the antidiagonal.
  2. The set of all rectangles where is on the antidiagonal.

The thing to notice here is that each point on the antidiagonal is contained in exactly one set of the covering, so all the (uncountably many) sets of item (2) above are needed.

Another way to see that is not Lindelöf is to note that the antidiagonal defines a closed and uncountable discrete subspace of This subspace is not Lindelöf, and so the whole space cannot be Lindelöf either (as closed subspaces of Lindelöf spaces are also Lindelöf).

Generalisation

The following definition generalises the definitions of compact and Lindelöf: a topological space is -compact (or -Lindelöf), where is any cardinal, if every open cover has a subcover of cardinality strictly less than . Compact is then -compact and Lindelöf is then -compact.

The Lindelöf degree, or Lindelöf number is the smallest cardinal such that every open cover of the space has a subcover of size at most In this notation, is Lindelöf if The Lindelöf number as defined above does not distinguish between compact spaces and Lindelöf non-compact spaces. Some authors gave the name Lindelöf number to a different notion: the smallest cardinal such that every open cover of the space has a subcover of size strictly less than [17] In this latter (and less used) sense the Lindelöf number is the smallest cardinal such that a topological space is -compact. This notion is sometimes also called the compactness degree of the space [18]

See also

  • Axioms of countability – property of certain mathematical objects (usually in a category) that asserts the existence of a countable set with certain properties. Without such an axiom, such a set might not probably exist.
  • Lindelöf's lemma – lemma that every open subset of the reals is a countable union of open intervals

Notes

  1. ^ Steen & Seebach, p. 19
  2. ^ Willard, Def. 16.5, p. 110
  3. ^ Willard, 16E, p. 114
  4. ^ Ganster, M. (1989). "A note on strongly Lindelöf spaces" (PDF). Technische Universität Graz. S2CID 208002077.
  5. ^ Willard, theorem 16.9, p. 111
  6. ^ Willard, theorem 16.11, p. 112
  7. ^ Willard, theorem 16.8, p. 111
  8. ^ Michael, Ernest (1953). "A note on paracompact spaces". Proceedings of the American Mathematical Society. 4 (5): 831–838. doi:10.1090/S0002-9939-1953-0056905-8. MR 0056905.
  9. ^ Willard, theorem 16.6, p. 110
  10. ^ "Examples of Lindelof Spaces that are not Hereditarily Lindelof". 15 April 2012.
  11. ^ Willard, theorem 16.6, p. 110
  12. ^ "The Tube Lemma". 2 May 2011.
  13. ^ "A Note on the Sorgenfrey Line". 27 September 2009.
  14. ^ Engelking, 3.8.A(b), p. 194
  15. ^ Engelking, 3.8.A(c), p. 194
  16. ^ "General topology - Another question on hereditarily lindelöf space".
  17. ^ Mary Ellen Rudin, Lectures on set theoretic topology, Conference Board of the Mathematical Sciences, American Mathematical Society, 1975, p. 4, retrievable on Google Books [1]
  18. ^ Hušek, Miroslav (1969). "The class of k-compact spaces is simple". Mathematische Zeitschrift. 110 (2): 123–126. doi:10.1007/BF01124977. MR 0244947. S2CID 120212653..

References

Further reading

Read other articles:

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Januari 2023. Ekabahasa adalah kemampuan menggunakan hanya satu bahasa, berbeda dengan multibahasa. Ekabahasa dihubung-hubungkan dengan kemampuan menulis, memahami kamus, atau percakapan yang dilakukan hanya dengan satu bahasa, dan juga tempat di mana satu bahasa it...

 

 

Морской царь Открытка работы Ивана Билибина царь морей и океанов Мифология Славянская Местность Дно морское, Ильмень-озеро Сфера влияния море и океан Пол мужской Дети Василиса Премудрая и ещё 12 морских дев Связанные персонажи Садко, морские девы Атрибуты венец, вес�...

 

 

Atlàntida redirects here. For the poem by Verdaguer, see L'Atlàntida. AtlántidaUnfinished opera by Manuel de FallaThe composerDescriptioncantata escénicaTranslationAtlantisLanguageCatalanBased onL'Atlàntidaby Jacint VerdaguerPremiere18 June 1962 (1962-06-18) (completed by Ernesto Halffter)Teatro alla Scala, Milan Atlántida (Atlantis) is an opera (titled a 'cantata escénica') in a prologue and three parts, by Manuel de Falla, based on the Catalan poem L'Atlàntida by Jaci...

2000 video game 2000 video gameVictorious Boxers: Ippo's Road to GloryNorth American version cover artDeveloper(s)New CorporationPublisher(s)JP: Entertainment Software PublishingWW: Empire InteractiveDirector(s)Ryuta AoyagiDesigner(s)Ryuta AoyagiProgrammer(s)Kazuya FurukawaComposer(s)Takayuki AiharaShinji HosoeNaoki TsuchiyaPlatform(s)PlayStation 2ReleaseOriginal versionJP: December 14, 2000EU: September 21, 2001NA: November 5, 2001Championship VersionJP: June 27, 2002 (PlayStation 2 the Best...

 

 

Ketua Partai Komunis TiongkokLogo Partai Komunis Tiongkok hingga tahun 1996Bendera Partai Komunis Tiongkok hingga tahun 1996Komite Sentral Partai Komunis TiongkokJenisKetua PartaiAtasanKongres Nasional Partai Komunis TiongkokKantorZhongnanhaiBeijing, Republik Rakyat TiongkokDicalonkan olehKomite Sentral Partai Komunis TiongkokDitunjuk olehKomite Sentral Partai Komunis TiongkokMasa jabatanLima tahun, tak terbatasDasar hukumKonstitusi Partai Komunis TiongkokPejabat perdanaMao ZedongDibentuk11 J...

 

 

Universitas Islam Imam Muhammad bin Saudجامعة الإمام محمد بن سعود الإسلامية Jāmi'āh Al-Imām Muhammad bin Saud Al-IslāmiyahJenisPerguruan tinggi negeriDidirikan1974RektorDr. Ahmed bin Salem bin Mohammed Al-AmeriStaf akademik3.500+Jumlah mahasiswa100.000+LokasiRiyadh[1][2], Arab Saudi24°29′09″N 46°25′29″E / 24.485895°N 46.424742°E / 24.485895; 46.424742Koordinat: 24°29′09″N 46°25′29″E / þ...

1941 battle of the Second Sino-Japanese War You can help expand this article with text translated from the corresponding article in Japanese. (October 2021) Click [show] for important translation instructions. View a machine-translated version of the Japanese article. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting...

 

 

Voce principale: Virtus Bergamo 1909. Alzano 1909 Virescit Football ClubStagione 2001-2002Sport calcio Squadra Virtus Bergamo Allenatore Giorgio Rosselli poi Carlo Soldo Presidente Franco Morotti Serie C115º posto nel girone A. Maggiori presenzeCampionato: Madonna (34) Miglior marcatoreCampionato: Sgrò (8) 2000-2001 2002-2003 Si invita a seguire il modello di voce Questa pagina raccoglie le informazioni riguardanti l'Alzano 1909 Virescit Football Club nelle competizioni ufficiali dell...

 

 

Danish handball club This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (April 2022) (Learn how and when to remove this message) Viborg HKFull nameViborg Håndboldklub ApSShort nameVHKFounded19 March 1936 (as Idrætsklubben Viborg)ArenaBioCirc ArenaCapacity2,865 (1,883 seats)PresidentJens SteffensenHead coachJakob VestergaardCaptainMaria FiskerLeag...

Defunct American record label Del-Fi RecordsParent companyWarner Music GroupFounded1958 (1958)FounderBob KeaneDefunct2003 (2003)StatusDefunctDistributor(s)Self-distributedGenreVariousCountry of originU.S.LocationHollywood, California Del-Fi Records was an American record label based in Hollywood, California was founded 1958 and owned by Bob Keane. The label's first single released was Caravan by Henri Rose released in 1958, but the label was most famous for signing Ritchie Valens. V...

 

 

Supreme commander of the Indian Army before 1950 Commander-in-Chief, IndiaLongest servingGeneral The Earl of MoiraOctober 1813 – January 1823 British Indian ArmyStatusSenior-most officer of the Indian ArmyReports toGovernor-General of IndiaResidenceFlagstaff HouseSeatGHQ IndiaTerm lengthNo fixed termFirst holderMajor general Stringer Lawrence[citation needed]Final holderFM Sir Claude AuchinleckAbolished15 August 1947SuccessionCommanders-in-Chief of the Indian Army and Pakistan ...

 

 

Acer macrophyllum Acer macrophyllum Érable à grandes feuillesClassification de Cronquist (1981) Règne Plantae Sous-règne Tracheobionta Division Magnoliophyta Classe Magnoliopsida Sous-classe Rosidae Ordre Sapindales Famille Aceraceae Genre Acer EspèceAcer macrophyllumPursh, 1813 Classification APG III (2009) Classification APG III (2009) Ordre Sapindales Famille Sapindaceae L'érable à grandes feuilles ou érable de l'Orégon (Acer macrophyllum) est une espèce de grands arbres à feuil...

В Википедии есть статьи о других людях с такой фамилией, см. Григ. Эдвард Хагеруп Григнорв. Edvard Hagerup Grieg Эдвард Григ, март 1888 года Основная информация Имя при рождении норв. Edvard Hagerup Grieg Дата рождения 15 июня 1843(1843-06-15) Место рождения Берген, Шведско-норвежская уния Дата...

 

 

Pour les articles homonymes, voir Moskova (homonymie). Moskovarusse : Москва La Moskova et le Kremlin de Moscou en 2007. Cours de la Moskova. Caractéristiques Longueur 502 km Bassin 17 600 km2 Bassin collecteur la Volga Débit moyen 150 m3/s (Kolomna) Régime nivo-pluvial Cours Source source · Coordonnées 55° 29′ 27″ N, 35° 24′ 04″ E Confluence l'Oka · Coordonnées 55° 04′ 31″ N, 38° 50′...

 

 

「ろうきん」はこの項目へ転送されています。FUNAによるライトノベル作品については「老後に備えて異世界で8万枚の金貨を貯めます」をご覧ください。 労働金庫の店舗例(四国労働金庫西条支店, 愛媛県西条市) 労働金庫(ろうどうきんこ、略称:労金(ろうきん)、英語:Labour Bank/Worker's Credit Union)とは、日本において預金の受け入れ、資金の移動や貸し出し(�...

Réserve naturelle d'Obedska baraGéographiePays SerbieProvince VoïvodineRégion SyrmieCoordonnées 44° 43′ 00″ N, 20° 01′ 00″ EVille proche Pećinci, RumaSuperficie 98,20 km2AdministrationCatégorie UICN IVWDPA 328840Création 1951Patrimonialité Site RamsarLocalisation sur la carte d’EuropeLocalisation sur la carte de Serbiemodifier - modifier le code - modifier Wikidata La réserve naturelle de l'Obedska bara (en serbe cyrillique : Об�...

 

 

Spanish labour system in its colonies Francisco Hernández Girón was a Spanish encomendero in the Viceroyalty of Peru who protested the New Laws in 1553. These laws, passed in 1542, gave certain rights to indigenous peoples and protected them against abuses. Drawing by Felipe Guamán Poma de Ayala. Part of a series onForced labour and slavery Contemporary Child Labour Child soldiers Conscription Debt Forced marriage Bride buying Child marriage Wife selling Forced prostitution Human trafficki...

 

 

This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Michael Chaim Nelson – news · newspapers · books · scholar · JSTOR (February 2019) (Learn how and when to remove this message) Michael Chaim Nelso...

American actress (1893–1981) Not to be confused with the American astrologer Jeane Dixon. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Jean Dixon – news · newspapers · books · scholar · JSTOR (November 2020) (Learn how and when to remove this message) Jean DixonDixon in My Man Godfrey (1936)BornJean Jac...

 

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (نوفمبر 2019) فرانك ثورن (بالإنجليزية: Frank Thorne)‏   ثورن سنة 2017    معلومات شخصية الميلاد 16 يونيو 1930 [1][2]  راهواي  تاريخ الوفاة 7 مارس 2021 (90 سنة) [3] ...