Constant-weight code

In coding theory, a constant-weight code, also called an m-of-n code, is an error detection and correction code where all codewords share the same Hamming weight. The one-hot code and the balanced code are two widely used kinds of constant-weight code.

The theory is closely connected to that of designs (such as t-designs and Steiner systems). Most of the work on this field of discrete mathematics is concerned with binary constant-weight codes.

Binary constant-weight codes have several applications, including frequency hopping in GSM networks.[1] Most barcodes use a binary constant-weight code to simplify automatically setting the brightness threshold that distinguishes black and white stripes. Most line codes use either a constant-weight code, or a nearly-constant-weight paired disparity code. In addition to use as error correction codes, the large space between code words can also be used in the design of asynchronous circuits such as delay insensitive circuits.

Constant-weight codes, like Berger codes, can detect all unidirectional errors.

A(n, d, w)

The central problem regarding constant-weight codes is the following: what is the maximum number of codewords in a binary constant-weight code with length , Hamming distance , and weight ? This number is called .

Apart from some trivial observations, it is generally impossible to compute these numbers in a straightforward way. Upper bounds are given by several important theorems such as the first and second Johnson bounds,[2] and better upper bounds can sometimes be found in other ways. Lower bounds are most often found by exhibiting specific codes, either with use of a variety of methods from discrete mathematics, or through heavy computer searching. A large table of such record-breaking codes was published in 1990,[3] and an extension to longer codes (but only for those values of and which are relevant for the GSM application) was published in 2006.[1]

1-of-N codes

A special case of constant weight codes are the one-of-N codes, that encode bits in a code-word of bits. The one-of-two code uses the code words 01 and 10 to encode the bits '0' and '1'. A one-of-four code can use the words 0001, 0010, 0100, 1000 in order to encode two bits 00, 01, 10, and 11. An example is dual rail encoding, and chain link [4] used in delay insensitive circuits. For these codes, and .

Some of the more notable uses of one-hot codes include biphase mark code uses a 1-of-2 code; pulse-position modulation uses a 1-of-n code; address decoder, etc.

Balanced code

In coding theory, a balanced code is a binary forward error correction code for which each codeword contains an equal number of zero and one bits. Balanced codes have been introduced by Donald Knuth;[5] they are a subset of so-called unordered codes, which are codes having the property that the positions of ones in a codeword are never a subset of the positions of the ones in another codeword. Like all unordered codes, balanced codes are suitable for the detection of all unidirectional errors in an encoded message. Balanced codes allow for particularly efficient decoding, which can be carried out in parallel.[5][6][7]

Some of the more notable uses of balanced-weight codes include biphase mark code uses a 1 of 2 code; 6b/8b encoding uses a 4 of 8 code; the Hadamard code is a of code (except for the zero codeword), the three-of-six code; etc.

The 3-wire lane encoding used in MIPI C-PHY can be considered a generalization of constant-weight code to ternary -- each wire transmits a ternary signal, and at any one instant one of the 3 wires is transmitting a low, one is transmitting a middle, and one is transmitting a high signal.[8]

m-of-n codes

An m-of-n code is a separable error detection code with a code word length of n bits, where each code word contains exactly m instances of a "one". A single bit error will cause the code word to have either m + 1 or m − 1 "ones". An example m-of-n code is the 2-of-5 code used by the United States Postal Service.

The simplest implementation is to append a string of ones to the original data until it contains m ones, then append zeros to create a code of length n.

Example:

3-of-6 code
Original 3 data bits Appended bits
000 111
001 110
010 110
011 100
100 110
101 100
110 100
111 000

Some of the more notable uses of constant-weight codes, other than the one-hot and balanced-weight codes already mentioned above, include Code 39 uses a 3-of-9 code; bi-quinary coded decimal code uses a 2-of-7 code, the 2-of-5 code, etc.

References

  1. ^ a b D. H. Smith, L. A. Hughes and S. Perkins (2006). "A New Table of Constant Weight Codes of Length Greater than 28". The Electronic Journal of Combinatorics 13.
  2. ^ See pp. 526–527 of F. J. MacWilliams and N. J. A. Sloane (1979). The Theory of Error-Correcting Codes. Amsterdam: North-Holland.
  3. ^ A. E. Brouwer, James B. Shearer, N. J. A. Sloane and Warren D. Smith (1990). "A New Table of Constant Weight Codes". IEEE Transactions of Information Theory 36.
  4. ^ W.J. Bainbridge; A. Bardsley; R.W. McGuffin. "System-on-Chip Design using Self-timed Networks-on-Chip".
  5. ^ a b D.E. Knuth (January 1986). "Efficient balanced codes" (PDF). IEEE Transactions on Information Theory. 32 (1): 51–53. doi:10.1109/TIT.1986.1057136.[permanent dead link]
  6. ^ Sulaiman Al-Bassam; Bella Bose (March 1990). "On Balanced Codes". IEEE Transactions on Information Theory. 36 (2): 406–408. doi:10.1109/18.52490.
  7. ^ K. Schouhamer Immink and J. Weber (2010). "Very efficient balanced codes". IEEE Journal on Selected Areas in Communications. 28 (2): 188–192. doi:10.1109/jsac.2010.100207. S2CID 8596702. Retrieved 2018-02-12.
  8. ^ "Demystifying MIPI C-PHY / DPHY Subsystem - Tradeoffs, Challenges, and Adoption" (mirror)

Read other articles:

Weightlifting Championship Main article: 2021 World Weightlifting Championships 2021 World Weightlifting ChampionshipsMenWomen55 kg45 kg61 kg49 kg67 kg55 kg73 kg59 kg81 kg64 kg89 kg71 kg96 kg76 kg102 kg81 kg109 kg87 kg+109 kg+87 kgvte The women's 71 kilograms competition at the 2021 World Weightlifting Championships was held on 13 December 2021.[1] Schedule Date Time Event 13 December 2021 08:30 Group C 13:00 Group B 19:00 Group A Medalists Event Gold Silver Bronze Snatch Evgeniia Gus...

 

Members of the New South Wales Legislative Council who served from 1872 to 1874 were appointed for life by the Governor on the advice of the Premier. This list includes members between the beginning of the 1872 colonial election on 13 February 1872 and the beginning of the 1874–75 colonial election on 8 December 1874.[1] The President was Sir Terence Murray until his death on 22 June 1873 and then John Hay.[6] Name Years in office Office George Allen 1856–1861, 1861–187...

 

Title in the Peerage of the United Kingdom Dukedom of WindsorArms of the Duke of WindsorCreation date8 March 1937CreationFirstCreated byGeorge VIPeeragePeerage of the United KingdomFirst holderPrince EdwardLast holderPrince EdwardRemainder tothe 1st Duke's heirs male of the body lawfully begottenSubsidiary titlesNoneStatusExtinct Duke of Windsor was a title in the Peerage of the United Kingdom. It was created on 8 March 1937 for the former monarch Edward VIII, following his abdication on 11 D...

Para otros usos de este término, véase Construcción (desambiguación). Edificio en construcción en Melbourne. Este artículo o sección tiene referencias, pero necesita más para complementar su verificabilidad. Busca fuentes: «Construcción» – noticias · libros · académico · imágenesEste aviso fue puesto el 9 de julio de 2023. En los campos de la arquitectura e ingeniería, la construcción es el arte o técnica de fabricar edificios e infraestructuras.[1]...

 

Shanina Shaik2008Lahir11 Februari 1991 (umur 33)Melbourne, AustraliaKebangsaanAustraliaTahun aktif2008–sekarangInformasi modelingWarna rambutCoklat GelapWarna mataHijau HazelManajerIMG Models (Australia, NY, London)Traffic Models (Barcelona) Shanina Shaik (kelahiran 11 Februari 1991)[1][2] adalah seorang peragawati dari Melbourne, Australia. Kehidupan awal Ibu Shanina adalah orang keturunan Lithuania dan Australian, sementara ayahnya merupakan keturunan Pakistan d...

 

American politician (1873–1950) For other people with the same name, see James Pearson (disambiguation). James Pearson14th Lieutenant Governor of NebraskaIn officeJanuary 1915 – January 1917GovernorJohn H. MoreheadPreceded bySamuel Roy McKelvieSucceeded byEdgar Howard Personal detailsBorn1873Pana, IllinoisDiedApril 16, 1950 (aged 76)Shenandoah, IowaSpouse(s)Emma L. Clouse (1st wife)date of death 1918 Nancy Robbins Albin (divorced)EllenChildrenLuella Dollie Pearson (Ledbetter/Zeig...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: History of the Jews in Armenia – news · newspapers · books · scholar · JSTOR (May 2023) (Learn how and when to remove this message) Ethnic group Armenian Jewsיהדות ארמניהՀրեաներAn Armenian JewTotal population127 (2011 census data)LanguagesHeb...

 

Island in the state of Oregon 45°42′N 122°48′W / 45.7°N 122.8°W / 45.7; -122.8 Sauvie IslandNative name: Wapato IslandMap of Sauvie IslandSauvie IslandSauvie Island (Oregon)GeographyLocationColumbia RiverCoordinates45°42′N 122°48′W / 45.7°N 122.8°W / 45.7; -122.8Area32.75 sq mi (84.8 km2)AdministrationUnited StatesStateOregonDemographicsPopulation1078 (2000) Sauvie Island, in the U.S. state of Oregon, originally W...

 

International series of benefit concerts prior to the G8 summit in 2005 For the pair of benefit concerts whose twentieth anniversary Live 8 commemorated, see Live Aid. Live 8The Live 8 logoGenrePopRockDates2 and 6 July 2005; 18 years agoLocation(s)London, Paris, Berlin, Rome, Philadelphia, Barrie, Chiba, Johannesburg, Moscow, Cornwall, and EdinburghYears active2005Founded byBob Geldof, Midge UreWebsitewww.live8live.com Live 8 (French: En direct 8, German: Live 8, Italian: Vivi 8, Japanese: �...

Emi Nakajima Informasi pribadiNama lengkap Emi NakajimaTanggal lahir 27 September 1990 (umur 33)Tempat lahir Prefektur Shiga, JepangPosisi bermain GelandangKarier senior*Tahun Tim Tampil (Gol)2009– INAC Kobe Leonessa 152 (25)Tim nasional2011– Jepang 46 (9) * Penampilan dan gol di klub senior hanya dihitung dari liga domestik Emi Nakajima (中島 依美, lahir 27 September 1990) adalah seorang pemain sepak bola Jepang. Statistik [1] Jepang Tahun Tampil Gol 2011 2 0 2012 0 0 2...

 

Ice hockey team in North Richland Hills, TexasFort Worth BrahmasCityNorth Richland Hills, TexasLeagueCentral Hockey LeagueConferenceBerryFounded1997 (In the WPHL)Home arenaNYTEX Sports CentreColorsBlack, PurpleFranchise history1997–2006Fort Worth Brahmas2007–2012Texas Brahmas2012–2013Fort Worth BrahmasChampionshipsRegular season titles1997-98 Governors Cup ChampionsDivision titles2007-08 Northeast Division Champs, 2008-09 Southeast Division ChampsConference titles2008-09 Southern Confer...

 

王春宁2023年的王春宁 中国人民武装警察部队第九任司令员任期2020年12月起 个人资料性别男出生1963年3月江苏南京国籍 中华人民共和国政党 中国共产党军种 中国人民武装警察部队军衔上將亲属父:王永明 学历 中国人民解放军国防大学在职研究生 俄罗斯总参谋部军事学院 军衔记录 2011年晋升少将军衔 2017年7月晋升中将军衔 2020年4月改为武警中将警衔 2020年12月晋升武�...

Cet article est une ébauche concernant un coureur cycliste espagnol. Vous pouvez partager vos connaissances en l’améliorant (comment ?). Pour plus d’informations, voyez le projet cyclisme. Berrendero Espinosa est un nom espagnol. Le premier nom de famille, paternel, est Berrendero ; le second, maternel, souvent omis, est Espinosa. Julián BerrenderoJulián BerrenderoInformationsNom de naissance Julián Berrendero EspinosaNaissance 8 avril 1912San Agustín del GuadalixDécès ...

 

Cet article est une ébauche concernant la mer, un bateau ou un navire, le Royaume-Uni, l’Italie et l’Allemagne. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Mission Club RunÉpisode de la Campagne de la Méditerranée HMS Ark Royal Informations générales Date Août 1940-11 octobre 1942 Lieu Ouest de la Mer Méditerranée-Malte Issue Victoire tactique britannique Belligérants Royaume-UniModèle:Royal A...

 

Malayalam Films ← 1928-1960 1960 1961 → Malayalam cinema Before 1960 1960s 1960 1961 1962 1963 19641965 1966 1967 1968 1969 1970s 1970 1971 1972 1973 19741975 1976 1977 1978 1979 1980s 1980 1981 1982 1983 19841985 1986 1987 1988 1989 1990s 1990 1991 1992 1993 19941995 1996 1997 1998 1999 2000s 2000 2001 2002 2003 20042005 2006 2007 2008 2009 2010s 2010 2011 2012 2013 20142015 2016 2017 2018 2019 2020s 2020 2021 2022 2023 2024 vte This is a list of Malayalam films releas...

Kyrgyz football club Football clubFC Kara-BaltaFull nameFootball Club Kara-BaltaКара-Балта Футбол КлубуFounded1 June 1952GroundManas StadiumCapacity4,000[citation needed]ManagerVladimir DanilenkoLeagueKyrgyz Premier League2023KPL, 10th of 10 (relegated) Football Club Kara-Balta (Kyrgyz: Кара-Балта Футбол Клубу, romanized: Qara-Balta Futbol Klubu) is a Kyrgyz professional football club based in Kara-Balta, that competes in the Kyrgyz Premier...

 

Partai Sarikat Indonesia SingkatanPSIKetua umumRahardjo TjakraningratSekretaris JenderalNazir MuchamadDibentuk17 Desember 2002Digabungkan dariPP (PDR)PKD Partai Bhinneka Tunggal Ika PNI Front Marhaenis PNI Massa Marhaen Partai Ikatan Pendukung Kemerdekaan IndonesiaDigabungkan denganPAN (2005–08)Kantor pusatJalan Kemang Timur Raya No. 55 Jakarta Selatan 12730 DKI JakartaIdeologiPancasilaPolitik IndonesiaPartai politikPemilihan umum Partai Sarikat Indonesia (PSI) adalah sebuah parta...

 

Croatia Open Umag 1995Sport Tennis Data21 agosto - 28 agosto Edizione6a SuperficieTerra rossa CampioniSingolare Thomas Muster Doppio Luis Lobo / Javier Sánchez 1994 1996 Il Croatia Open Umag 1995 è stato un torneo di tennis giocato sulla terra rossa di Umago in Croazia. È stata la 6ª edizione del torneo, che fa parte della categoria World Series nell'ambito dell'ATP Tour 1995. il torneo si è giocato dal 21 al 28 agosto 1995. Indice 1 Campiones 1.1 Singolare 1.2 Doppio 2 Collegamenti este...

Language official or recognized in several countries The PALOP (Países Africanos de Língua Oficial Portuguesa), highlighted in red Portuguese is spoken in a number of African countries and is the official language in six African countries: Angola, Cape Verde, Equatorial Guinea, Guinea-Bissau, Mozambique and São Tomé and Príncipe. There are Portuguese-speaking communities in most countries of Southern Africa, a mixture of Portuguese settlers and Angolans and Mozambicans who left their cou...

 

Principle to separate religious and civil institutions Church and state redirects here. For other uses, see Church and State (disambiguation). Freedom of religion Concepts Laicism Religious discrimination Religious censorship Religious liberty Religious pluralism Secularism Separation of church and state Anti-clericalism School prayer Catholic priests in public office Confessionalism Theocracy State religion Secular state Confessional state Atheist state Status by country Africa Algeria Angol...