Complex-base system
Positional numeral system
In arithmetic , a complex-base system is a positional numeral system whose radix is an imaginary (proposed by Donald Knuth in 1955[ 1] [ 2] ) or complex number (proposed by S. Khmelnik in 1964[ 3] and Walter F. Penney in 1965[ 4] [ 5] [ 6] ).
In general
Let
D
{\displaystyle D}
be an integral domain
⊂ ⊂ -->
C
{\displaystyle \subset \mathbb {C} }
, and
|
⋅ ⋅ -->
|
{\displaystyle |\cdot |}
the (Archimedean) absolute value on it.
A number
X
∈ ∈ -->
D
{\displaystyle X\in D}
in a positional number system is represented as an expansion
X
=
± ± -->
∑ ∑ -->
ν ν -->
x
ν ν -->
ρ ρ -->
ν ν -->
,
{\displaystyle X=\pm \sum _{\nu }^{}x_{\nu }\rho ^{\nu },}
where
ρ ρ -->
∈ ∈ -->
D
{\displaystyle \rho \in D}
is the radix (or base ) with
|
ρ ρ -->
|
>
1
{\displaystyle |\rho |>1}
,
ν ν -->
∈ ∈ -->
Z
{\displaystyle \nu \in \mathbb {Z} }
is the exponent (position or place),
x
ν ν -->
{\displaystyle x_{\nu }}
are digits from the finite set of digits
Z
⊂ ⊂ -->
D
{\displaystyle Z\subset D}
, usually with
|
x
ν ν -->
|
<
|
ρ ρ -->
|
.
{\displaystyle |x_{\nu }|<|\rho |.}
The cardinality
R
:=
|
Z
|
{\displaystyle R:=|Z|}
is called the level of decomposition .
A positional number system or coding system is a pair
⟨
ρ ρ -->
,
Z
⟩
{\displaystyle \left\langle \rho ,Z\right\rangle }
with radix
ρ ρ -->
{\displaystyle \rho }
and set of digits
Z
{\displaystyle Z}
, and we write the standard set of digits with
R
{\displaystyle R}
digits as
Z
R
:=
{
0
,
1
,
2
,
… … -->
,
R
− − -->
1
}
.
{\displaystyle Z_{R}:=\{0,1,2,\dotsc ,{R-1}\}.}
Desirable are coding systems with the features:
Every number in
D
{\displaystyle D}
, e. g. the integers
Z
{\displaystyle \mathbb {Z} }
, the Gaussian integers
Z
[
i
]
{\displaystyle \mathbb {Z} [\mathrm {i} ]}
or the integers
Z
[
− − -->
1
+
i
7
2
]
{\displaystyle \mathbb {Z} [{\tfrac {-1+\mathrm {i} {\sqrt {7}}}{2}}]}
, is uniquely representable as a finite code, possibly with a sign ±.
Every number in the field of fractions
K
:=
Quot
-->
(
D
)
{\displaystyle K:=\operatorname {Quot} (D)}
, which possibly is completed for the metric given by
|
⋅ ⋅ -->
|
{\displaystyle |\cdot |}
yielding
K
:=
R
{\displaystyle K:=\mathbb {R} }
or
K
:=
C
{\displaystyle K:=\mathbb {C} }
, is representable as an infinite series
X
{\displaystyle X}
which converges under
|
⋅ ⋅ -->
|
{\displaystyle |\cdot |}
for
ν ν -->
→ → -->
− − -->
∞ ∞ -->
{\displaystyle \nu \to -\infty }
, and the measure of the set of numbers with more than one representation is 0. The latter requires that the set
Z
{\displaystyle Z}
be minimal, i.e.
R
=
|
ρ ρ -->
|
{\displaystyle R=|\rho |}
for real numbers and
R
=
|
ρ ρ -->
|
2
{\displaystyle R=|\rho |^{2}}
for complex numbers.
In the real numbers
In this notation our standard decimal coding scheme is denoted by
⟨
10
,
Z
10
⟩
,
{\displaystyle \left\langle 10,Z_{10}\right\rangle ,}
the standard binary system is
⟨
2
,
Z
2
⟩
,
{\displaystyle \left\langle 2,Z_{2}\right\rangle ,}
the negabinary system is
⟨
− − -->
2
,
Z
2
⟩
,
{\displaystyle \left\langle -2,Z_{2}\right\rangle ,}
and the balanced ternary system[ 2] is
⟨
3
,
{
− − -->
1
,
0
,
1
}
⟩
.
{\displaystyle \left\langle 3,\{-1,0,1\}\right\rangle .}
All these coding systems have the mentioned features for
Z
{\displaystyle \mathbb {Z} }
and
R
{\displaystyle \mathbb {R} }
, and the last two do not require a sign.
In the complex numbers
Well-known positional number systems for the complex numbers include the following (
i
{\displaystyle \mathrm {i} }
being the imaginary unit ):
⟨
R
,
Z
R
⟩
{\displaystyle \left\langle {\sqrt {R}},Z_{R}\right\rangle }
, e.g.
⟨
± ± -->
i
2
,
Z
2
⟩
{\displaystyle \left\langle \pm \mathrm {i} {\sqrt {2}},Z_{2}\right\rangle }
[ 1] and
⟨
± ± -->
2
i
,
Z
4
⟩
{\displaystyle \left\langle \pm 2\mathrm {i} ,Z_{4}\right\rangle }
,[ 2] the quater-imaginary base , proposed by Donald Knuth in 1955.
⟨
2
e
± ± -->
π π -->
2
i
=
± ± -->
i
2
,
Z
2
⟩
{\displaystyle \left\langle {\sqrt {2}}e^{\pm {\tfrac {\pi }{2}}\mathrm {i} }=\pm \mathrm {i} {\sqrt {2}},Z_{2}\right\rangle }
and
⟨
2
e
± ± -->
3
π π -->
4
i
=
− − -->
1
± ± -->
i
,
Z
2
⟩
{\displaystyle \left\langle {\sqrt {2}}e^{\pm {\tfrac {3\pi }{4}}\mathrm {i} }=-1\pm \mathrm {i} ,Z_{2}\right\rangle }
[ 3] [ 5] (see also the section Base −1 ± i below).
⟨
R
e
i
φ φ -->
,
Z
R
⟩
{\displaystyle \left\langle {\sqrt {R}}e^{\mathrm {i} \varphi },Z_{R}\right\rangle }
, where
φ φ -->
=
± ± -->
arccos
-->
(
− − -->
β β -->
/
(
2
R
)
)
{\displaystyle \varphi =\pm \arccos {(-\beta /(2{\sqrt {R}}))}}
,
β β -->
<
min
(
R
,
2
R
)
{\displaystyle \beta <\min(R,2{\sqrt {R}})}
and
β β -->
{\displaystyle \beta _{}^{}}
is a positive integer that can take multiple values at a given
R
{\displaystyle R}
.[ 7] For
β β -->
=
1
{\displaystyle \beta =1}
and
R
=
2
{\displaystyle R=2}
this is the system
⟨
− − -->
1
+
i
7
2
,
Z
2
⟩
.
{\displaystyle \left\langle {\tfrac {-1+\mathrm {i} {\sqrt {7}}}{2}},Z_{2}\right\rangle .}
⟨
2
e
π π -->
3
i
,
A
4
:=
{
0
,
1
,
e
2
π π -->
3
i
,
e
− − -->
2
π π -->
3
i
}
⟩
{\displaystyle \left\langle 2e^{{\tfrac {\pi }{3}}\mathrm {i} },A_{4}:=\left\{0,1,e^{{\tfrac {2\pi }{3}}\mathrm {i} },e^{-{\tfrac {2\pi }{3}}\mathrm {i} }\right\}\right\rangle }
.[ 8]
⟨
− − -->
R
,
A
R
2
⟩
{\displaystyle \left\langle -R,A_{R}^{2}\right\rangle }
, where the set
A
R
2
{\displaystyle A_{R}^{2}}
consists of complex numbers
r
ν ν -->
=
α α -->
ν ν -->
1
+
α α -->
ν ν -->
2
i
{\displaystyle r_{\nu }=\alpha _{\nu }^{1}+\alpha _{\nu }^{2}\mathrm {i} }
, and numbers
α α -->
ν ν -->
∈ ∈ -->
Z
R
{\displaystyle \alpha _{\nu }^{}\in Z_{R}}
, e.g.
⟨
− − -->
2
,
{
0
,
1
,
i
,
1
+
i
}
⟩
.
{\displaystyle \left\langle -2,\{0,1,\mathrm {i} ,1+\mathrm {i} \}\right\rangle .}
[ 8]
⟨
ρ ρ -->
=
ρ ρ -->
2
,
Z
2
⟩
{\displaystyle \left\langle \rho =\rho _{2},Z_{2}\right\rangle }
, where
ρ ρ -->
2
=
{
(
− − -->
2
)
ν ν -->
2
if
ν ν -->
even,
(
− − -->
2
)
ν ν -->
− − -->
1
2
i
if
ν ν -->
odd.
{\displaystyle \rho _{2}={\begin{cases}(-2)^{\tfrac {\nu }{2}}&{\text{if }}\nu {\text{ even,}}\\(-2)^{\tfrac {\nu -1}{2}}\mathrm {i} &{\text{if }}\nu {\text{ odd.}}\end{cases}}}
[ 9]
Binary systems
Binary coding systems of complex numbers, i.e. systems with the digits
Z
2
=
{
0
,
1
}
{\displaystyle Z_{2}=\{0,1\}}
, are of practical interest.[ 9]
Listed below are some coding systems
⟨ ⟨ -->
ρ ρ -->
,
Z
2
⟩ ⟩ -->
{\displaystyle \langle \rho ,Z_{2}\rangle }
(all are special cases of the systems above) and resp. codes for the (decimal) numbers −1, 2, −2, i .
The standard binary (which requires a sign, first line) and the "negabinary" systems (second line) are also listed for comparison. They do not have a genuine expansion for i .
Some bases and some representations[ 10]
Radix
–1 ←
2 ←
–2 ←
i ←
Twins and triplets
2
–1
10
–10
i
1 ←
0.1 = 1.0
–2
11
110
10
i
1 / 3 ←
0.01 = 1.10
i
2
{\displaystyle \mathrm {i} {\sqrt {2}}}
101
10100
100
10.101010100...[ 11]
1
3
+
1
3
i
2
{\displaystyle {\frac {1}{3}}+{\frac {1}{3}}\mathrm {i} {\sqrt {2}}}
←
0.0011 = 11.1100
− − -->
1
+
i
7
2
{\displaystyle {\frac {-1+\mathrm {i} {\sqrt {7}}}{2}}}
111
1010
110
11.110001100...[ 11]
3
+
i
7
4
{\displaystyle {\frac {3+\mathrm {i} {\sqrt {7}}}{4}}}
←
1.011 = 11.101 = 11100.110
ρ ρ -->
2
{\displaystyle \rho _{2}}
101
10100
100
10
1 / 3 + 1 / 3 i ←
0.0011 = 11.1100
–1+i
11101
1100
11100
11
1 / 5 + 3 / 5 i ←
0.010 = 11.001 = 1110.100
2i
103
2
102
10.2
1 / 5 + 2 / 5 i ←
0.0033 = 1.3003 = 10.0330 = 11.3300
As in all positional number systems with an Archimedean absolute value , there are some numbers with multiple representations . Examples of such numbers are shown in the right column of the table. All of them are repeating fractions with the repetend marked by a horizontal line above it.
If the set of digits is minimal, the set of such numbers has a measure of 0. This is the case with all the mentioned coding systems.
The almost binary quater-imaginary system is listed in the bottom line for comparison purposes. There, real and imaginary part interleave each other.
Base −1 ± i
The complex numbers with integer part all zeroes in the base i – 1 system
Of particular interest are the quater-imaginary base (base 2i ) and the base −1 ± i systems discussed below, both of which can be used to finitely represent the Gaussian integers without sign.
Base −1 ± i , using digits 0 and 1 , was proposed by S. Khmelnik in 1964[ 3] and Walter F. Penney in 1965.[ 4] [ 6]
Connection to the twindragon
The rounding region of an integer – i.e., a set
S
{\displaystyle S}
of complex (non-integer) numbers that share the integer part of their representation in this system – has in the complex plane a fractal shape: the twindragon (see figure). This set
S
{\displaystyle S}
is, by definition, all points that can be written as
∑ ∑ -->
k
≥ ≥ -->
1
x
k
(
i
− − -->
1
)
− − -->
k
{\displaystyle \textstyle \sum _{k\geq 1}x_{k}(\mathrm {i} -1)^{-k}}
with
x
k
∈ ∈ -->
Z
2
{\displaystyle x_{k}\in Z_{2}}
.
S
{\displaystyle S}
can be decomposed into 16 pieces congruent to
1
4
S
{\displaystyle {\tfrac {1}{4}}S}
. Notice that if
S
{\displaystyle S}
is rotated counterclockwise by 135°, we obtain two adjacent sets congruent to
1
2
S
{\displaystyle {\tfrac {1}{\sqrt {2}}}S}
, because
(
i
− − -->
1
)
S
=
S
∪ ∪ -->
(
S
+
1
)
{\displaystyle (\mathrm {i} -1)S=S\cup (S+1)}
. The rectangle
R
⊂ ⊂ -->
S
{\displaystyle R\subset S}
in the center intersects the coordinate axes counterclockwise at the following points:
2
15
← ← -->
0.
00001100
¯ ¯ -->
{\displaystyle {\tfrac {2}{15}}\gets 0.{\overline {00001100}}}
,
1
15
i
← ← -->
0.
00000011
¯ ¯ -->
{\displaystyle {\tfrac {1}{15}}\mathrm {i} \gets 0.{\overline {00000011}}}
, and
− − -->
8
15
← ← -->
0.
11000000
¯ ¯ -->
{\displaystyle -{\tfrac {8}{15}}\gets 0.{\overline {11000000}}}
, and
− − -->
4
15
i
← ← -->
0.
00110000
¯ ¯ -->
{\displaystyle -{\tfrac {4}{15}}\mathrm {i} \gets 0.{\overline {00110000}}}
. Thus,
S
{\displaystyle S}
contains all complex numbers with absolute value ≤ 1 / 15 .[ 12]
As a consequence, there is an injection of the complex rectangle
[
− − -->
8
15
,
2
15
]
× × -->
[
− − -->
4
15
,
1
15
]
i
{\displaystyle [-{\tfrac {8}{15}},{\tfrac {2}{15}}]\times [-{\tfrac {4}{15}},{\tfrac {1}{15}}]\mathrm {i} }
into the interval
[
0
,
1
)
{\displaystyle [0,1)}
of real numbers by mapping
∑ ∑ -->
k
≥ ≥ -->
1
x
k
(
i
− − -->
1
)
− − -->
k
↦ ↦ -->
∑ ∑ -->
k
≥ ≥ -->
1
x
k
b
− − -->
k
{\displaystyle \textstyle \sum _{k\geq 1}x_{k}(\mathrm {i} -1)^{-k}\mapsto \sum _{k\geq 1}x_{k}b^{-k}}
with
b
>
2
{\displaystyle b>2}
.[ 13]
Furthermore, there are the two mappings
Z
2
N
→ → -->
S
(
x
k
)
k
∈ ∈ -->
N
↦ ↦ -->
∑ ∑ -->
k
≥ ≥ -->
1
x
k
(
i
− − -->
1
)
− − -->
k
{\displaystyle {\begin{array}{lll}Z_{2}^{\mathbb {N} }&\to &S\\\left(x_{k}\right)_{k\in \mathbb {N} }&\mapsto &\sum _{k\geq 1}x_{k}(\mathrm {i} -1)^{-k}\end{array}}}
and
Z
2
N
→ → -->
[
0
,
1
)
(
x
k
)
k
∈ ∈ -->
N
↦ ↦ -->
∑ ∑ -->
k
≥ ≥ -->
1
x
k
2
− − -->
k
{\displaystyle {\begin{array}{lll}Z_{2}^{\mathbb {N} }&\to &[0,1)\\\left(x_{k}\right)_{k\in \mathbb {N} }&\mapsto &\sum _{k\geq 1}x_{k}2^{-k}\end{array}}}
both surjective , which give rise to a surjective (thus space-filling) mapping
[
0
,
1
)
→ → -->
S
{\displaystyle [0,1)\qquad \to \qquad S}
which, however, is not continuous and thus not a space-filling curve . But a very close relative, the Davis-Knuth dragon , is continuous and a space-filling curve.
See also
References
^ a b Knuth, D.E. (1960). "An Imaginary Number System" . Communications of the ACM . 3 (4): 245–247. doi :10.1145/367177.367233 . S2CID 16513137 .
^ a b c Knuth, Donald (1998). "Positional Number Systems". The art of computer programming . Vol. 2 (3rd ed.). Boston: Addison-Wesley. p. 205. ISBN 0-201-89684-2 . OCLC 48246681 .
^ a b c Khmelnik, S.I. (1964). "Specialized digital computer for operations with complex numbers". Questions of Radio Electronics (In Russian) . XII (2).
^ a b W. Penney, A "binary" system for complex numbers, JACM 12 (1965) 247-248.
^ a b Jamil, T. (2002). "The complex binary number system". IEEE Potentials . 20 (5): 39–41. doi :10.1109/45.983342 .
^ a b Duda, Jarek (2008-02-24). "Complex base numeral systems". arXiv :0712.1309 [math.DS ].
^ Khmelnik, S.I. (1966). "Positional coding of complex numbers". Questions of Radio Electronics (In Russian) . XII (9).
^ a b Khmelnik, S.I. (2004). Coding of Complex Numbers and Vectors (in Russian) (PDF) . Israel: Mathematics in Computer. ISBN 978-0-557-74692-7 .
^ a b Khmelnik, S.I. (2001). Method and system for processing complex numbers . Patent USA, US2003154226 (A1).
^ William J. Gilbert, "Arithmetic in Complex Bases" Mathematics Magazine Vol. 57, No. 2, March 1984
^ a b infinite non-repeating sequence
^ Knuth 1998 p.206
^ Base
b
=
2
{\displaystyle b=2}
cannot be taken because both,
2
− − -->
1
=
0.1
bin
=
0.5
dec
{\displaystyle \textstyle 2^{-1}=0.1_{\text{bin}}=0.5_{\text{dec}}}
and
∑ ∑ -->
k
≥ ≥ -->
2
2
− − -->
k
=
0.0
1
¯ ¯ -->
bin
=
0.1
bin
=
0.5
dec
{\displaystyle \textstyle \sum _{k\geq 2}2^{-k}=0.0{\overline {1}}_{\text{bin}}=0.1_{\text{bin}}=0.5_{\text{dec}}}
. However,
(
i
− − -->
1
)
− − -->
1
=
− − -->
0.1
bin
− − -->
0.1
bin
i
=
− − -->
0.5
dec
− − -->
0.5
dec
i
{\displaystyle \textstyle (\mathrm {i} -1)^{-1}=-0.1_{\text{bin}}-0.1_{\text{bin}}\mathrm {i} =-0.5_{\text{dec}}-0.5_{\text{dec}}\mathrm {i} }
is unequal to
∑ ∑ -->
k
≥ ≥ -->
2
(
i
− − -->
1
)
− − -->
k
=
0.1
dec
+
0.3
dec
i
{\displaystyle \textstyle \sum _{k\geq 2}(\mathrm {i} -1)^{-k}=0.1_{\text{dec}}+0.3_{\text{dec}}\mathrm {i} }
.
External links