Chord (aeronautics)

Aerofoil nomenclature showing chord line
Chord line of a turbine aerofoil section.
Chords on a swept-wing

In aeronautics, the chord is an imaginary straight line joining the leading edge and trailing edge of an aerofoil. The chord length is the distance between the trailing edge and the point where the chord intersects the leading edge.[1][2] The point on the leading edge used to define the chord may be the surface point of minimum radius.[2] For a turbine aerofoil the chord may be defined by the line between points where the front and rear of a 2-dimensional blade section would touch a flat surface when laid convex-side up.[3]

The wing, horizontal stabilizer, vertical stabilizer and propeller/rotor blades of an aircraft are all based on aerofoil sections, and the term chord or chord length is also used to describe their width. The chord of a wing, stabilizer and propeller is determined by measuring the distance between leading and trailing edges in the direction of the airflow. (If a wing has a rectangular planform, rather than tapered or swept, then the chord is simply the width of the wing measured in the direction of airflow.) The term chord is also applied to the width of wing flaps, ailerons and rudder on an aircraft.

The term is also applied to compressor and turbine aerofoils in gas turbine engines such as turbojet, turboprop, or turbofan engines for aircraft propulsion.

Many wings are not rectangular, so they have different chords at different positions. Usually, the chord length is greatest where the wing joins the aircraft's fuselage (called the root chord) and decreases along the wing toward the wing's tip (the tip chord). Most jet aircraft use a tapered swept wing design. To provide a characteristic figure that can be compared among various wing shapes, the mean aerodynamic chord (abbreviated MAC) is used, although it is complex to calculate. The mean aerodynamic chord is used for calculating pitching moments.[4]

Standard mean chord

Standard mean chord (SMC) is defined as wing area divided by wing span:[5]

where S is the wing area and b is the span of the wing. Thus, the SMC is the chord of a rectangular wing with the same area and span as those of the given wing. This is a purely geometric figure and is rarely used in aerodynamics.

Mean aerodynamic chord

Mean aerodynamic chord (MAC) is defined as:[6]

where y is the coordinate along the wing span and c is the chord at the coordinate y. Other terms are as for SMC.

The MAC is a two-dimensional representation of the whole wing. The pressure distribution over the entire wing can be reduced to a single lift force on and a moment around the aerodynamic center of the MAC. Therefore, not only the length but also the position of MAC is often important. In particular, the position of center of gravity (CG) of an aircraft is usually measured relative to the MAC, as the percentage of the distance from the leading edge of MAC to CG with respect to MAC itself.

Note that the figure to the right implies that the MAC occurs at a point where leading or trailing edge sweep changes. That is just a coincidence. In general, this is not the case. Any shape other than a simple trapezoid requires evaluation of the above integral.

The ratio of the length (or span) of a rectangular-planform wing to its chord is known as the aspect ratio, an important indicator of the lift-induced drag the wing will create.[7] (For wings with planforms that are not rectangular, the aspect ratio is calculated as the square of the span divided by the wing planform area.) Wings with higher aspect ratios will have less induced drag than wings with lower aspect ratios. Induced drag is most significant at low airspeeds. This is why gliders have long slender wings.

Tapered wing

Knowing the area (Sw), taper ratio () and the span (b) of the wing, the chord at any position on the span can be calculated by the formula:[8]

where

References

  1. ^ L. J. Clancy (1975), Aerodynamics, Section 5.2, Pitman Publishing Limited, London. ISBN 0-273-01120-0
  2. ^ a b Houghton, E. L.; Carpenter, P.W. (2003). Butterworth Heinmann (ed.). Aerodynamics for Engineering Students (5th ed.). ISBN 0-7506-5111-3. p.18
  3. ^ https://www.abbottaerospace.com/downloads/nasa-sp-290-turbine-design-and-application/, p.66 [dead link]
  4. ^ The Design Of The Aeroplane, Darrol Stinton 1984,ISBN 0 632 01877 1, p.26
  5. ^ V., Cook, M. (2013). Flight dynamics principles : a linear systems approach to aircraft stability and control (3rd ed.). Waltham, MA: Butterworth-Heinemann. ISBN 9780080982427. OCLC 818173505.{{cite book}}: CS1 maint: multiple names: authors list (link)
  6. ^ Abbott, I.H., and Von Doenhoff, A.E. (1959), Theory of Wing Sections, Section 1.4 (page 27), Dover Publications Inc., New York, Standard Book Number 486-60586-8
  7. ^ Kermode, A.C. (1972), Mechanics of Flight, Chapter 3, (p.103, eighth edition), Pitman Publishing Limited, London ISBN 0-273-31623-0
  8. ^ Ruggeri, M.C., (2009), Aerodinámica Teórica, Apuntes de la materia, UTN-FRH, Haedo, Buenos Aires

Read other articles:

UK executive agency Defence Electronics and Components AgencyAgency overviewFormed2015JurisdictionUnited KingdomHeadquartersMoD Sealand, FlintshireMinister responsibleJames Cartlidge MP, Minister of StateParent agencyMinistry of DefenceWebsitewww.gov.uk/government/organisations/defence-electronics-and-components-agency The Defence Electronics and Components Agency (DECA) is an executive agency sponsored by the United Kingdom's Ministry of Defence. The agency was formed in April 2015 from the ...

 

Questa voce sugli argomenti organizzazioni criminali e Stati Uniti d'America è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. La Mano Nera (in inglese Black Hand) fu un insieme di bande che praticava estorsioni all'interno delle comunità italiane nelle città statunitensi all'inizio del XX secolo. Un manifesto della polizia di New York per ricercati della Mano Nera, 1910 Indice 1 Storia 1.1 L'uccisione...

 

Pekko AikamiespoikaAlbum studio karya KompilasiDirilis1992Direkam1992GenreMusik humorDurasi39:21LabelFazer FinnlevyProduserTimo Koivusalon OST. Pekko Aikamiespoika adalah album kompilasi yang dirilis di bawah label Fazer Finnlevy, dan berkolaborasi dengan serial Pekko Aikamiespoika pada tahun 1992 untuk mengiringi film dan televisi Pekko Aikamiespoika. Daftar lagu Meijeriauton Madonna (3:01) Siksikö lähdit (3:18) Förskottia (2:14) Tunnelmalaulaja Lampinen (3:39) Oi Norma (3:23) Rällä...

Magistrates Court of the Australian Capital TerritoryThe Magistrates Court Building located in Civic, Canberra, completed in 1996.35°16′49″S 149°07′37″E / 35.280385°S 149.127023°E / -35.280385; 149.127023Established25 November 1930 (1930-11-25) (as the Court of Petty Sessions)[1]1 February 1986 (1986-02-01) (as the Magistrates Court)[1]JurisdictionAustralian Capital TerritoryJervis Bay TerritoryAustralian Antar...

 

Main article: 2024 United States presidential election 2024 United States presidential election in Wyoming ← 2020 November 5, 2024 2028 →   Nominee Donald Trump(presumptive) Joe Biden(presumptive) Party Republican Democratic Home state Florida Delaware Running mate TBA Kamala Harris(presumptive) Incumbent President Joe Biden Democratic Elections in Wyoming Federal government Presidential elections 1892 1896 1900 1904 1908 1912 1916 1920 1924 1928 1932 193...

 

Southeast Asian pastry dish Kueh Pie TeePie tees served in Kuala Lumpur, MalaysiaCoursePastryPlace of originMalaysia[1][2][3][4]Region or stateSoutheast AsiaAssociated cuisineMalaysia, Singapore, Indonesia Kueh Pie Tee is a thin and crispy pastry tart shell kuih often filled with a spicy, shredded Chinese turnips, sweet mixture of thinly sliced vegetables and prawns. It is a popular Peranakan dish, that is often consumed during Chinese New Year or tea parties. ...

Перуанский анчоус Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеГруппа:Костные рыбыКласс:Лучепёрые рыбыПодкласс:Новопёрые �...

 

Hidangan masakan Batak di lapo. Artikel ini merupakan bagian dari seriHidangan Indonesia Hidangan nasional Gado-gado Nasi goreng Rendang Sate Soto Tumpeng Masakan daerah dan budaya Aceh Arab Bali Banjar Batak Gorontalo Betawi Tionghoa India Indo Jawa Madura Makassar Melayu Minahasa Minangkabau Palembang Peranakan Sunda Maluku Papua Bahan Bumbu Penyedap Bumbu kacang Sambal Santan Jenis makanan Makanan Masakan Mi Sup Hidangan penutup Makanan ringan Kue Kerupuk Keripik Minuman Minuman Alkohol Ko...

 

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: コルク – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2017年4月) コルクを打ち抜いて作った瓶の栓 コルク(木栓、�...

Questa voce sull'argomento Germani è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. I Banochemi (noti anche come Baenochaemae, Bainochaimai-Βαινοχαίμαι o Bonochamae) furono un popolo germanico citato da Tolomeo e stanziato nella Germania Magna. Secondo il geografo, i Banochemi vivevano ad est dei Camavi, nei pressi del fiume Elba. Bibliografia Tolomeo, Geografia V · D · MPopoli germanici dell'evo antico (dal 113 a.C. al...

 

Prima della nascita del WTA Tour, ossia l'apertura alle tenniste professioniste dei tornei che prima di quell'anno erano riservati alle tenniste dilettanti, tutti gli eventi più importanti erano amatoriali, tra questi c'erano i tornei del Grande Slam: il Torneo di Wimbledon e gli U.S. National Championships. Indice 1 Gennaio 2 Febbraio 3 Marzo 4 Aprile 5 Maggio 6 Giugno 7 Luglio 8 Agosto 9 Settembre 10 Ottobre 11 Novembre 12 Dicembre 13 Senza data 14 Note 15 Bibliografia 16 Collegamenti este...

 

Major branch of Christianity This article is about the religion, doctrine and tradition of the Eastern Orthodox Church. For the institution and history of the largest church associated with Eastern Orthodoxy, see Eastern Orthodox Church.Not to be confused with Oriental Orthodox Churches.For related subjects, see Orthodox (disambiguation). Part of a series onEastern Christianity Mainstream communions Eastern Orthodoxy Oriental Orthodoxy (Coptic, Orthodox Tewahedo - Ethiopian and Eritrean -, Ar...

Hungarian actress and singer (1879-1955) This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (January 2011) (Learn how and when to remove this message) The native form of this personal name is Fedák Sarolta Klára Mária. This article uses Western name order when mentioning individuals. Sári FedákBorn(1879-09-27)September 27, 1879Beregszász, Austria-Hungar...

 

Japanese e-book platform Book☆WalkerType of businessSubsidiaryType of siteE-commerceFoundedDecember 1, 2005; 18 years ago (2005-12-01)HeadquartersChiyoda, Tokyo, JapanArea servedWorldwideCreated byKadokawa CorporationKey peopleIchiro Hashiba (president and CEO)IndustryPublishing, E-booksProductsManga, Light novels, MagazinesSubsidiariesGeeXPlusTristaComicWalkerURLbookwalker.jpCommercialYesRegistrationRequiredLaunchedDecember 3, 2010; 13 years ag...

 

Species of mammal This article is about the African antelope. For the European goat-antelope called gemsbok in Dutch, see Chamois. Gemsbok Male gemsbok in Etosha National Park, Namibia Gemsboks mock fighting at Leeudril, Nossob River, Kgalagadi Transfrontier Park, Northern Cape, South Africa Conservation status Least Concern  (IUCN 3.1)[1] Apparently Secure  (NatureServe)[2] Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Mammali...

5th G7 summitState Guesthouse, Akasaka Palace[1]Host countryJapanDatesJune 28–29, 1979Follows4th G7 summitPrecedes6th G7 summit The 5th G7 Summit was held at Tokyo, Japan between June 28 and 29, 1979. The venue for the summit meetings was the State Guesthouse.[2] The Group of Seven (G7) was an unofficial forum which brought together the heads of the richest industrialized countries: France, West Germany, Italy, Japan, the United Kingdom, the United States, Canada (since 1976...

 

For other people named John Michel, see John Michel (disambiguation). General John Michel (10 February 1765 – 5 April 1844) was a British Army officer. Biography Kingston Russell House He was born the son of David Robert Michel, MP of Kingston Russell House, Dorset, a colonel in the Dorset Militia[1] and inherited the Mountain River estate in St John, Jamaica, from his father-in-law, John Ayscough, receiving the compensation when the slaves were freed.[2] On 1 February 1781 ...

 

Person entitled to bear a coat of arms For other uses, see Armiger (disambiguation). Part of a series onHeraldic achievement External devices in addition to the central coat of arms Escutcheon Field Supporter Crest Torse Mantling Helmet Crown Compartment Charge Motto (or slogan) Coat of arms Heraldry portalvte In heraldry, an armiger is a (natural or juridical) person entitled to use a heraldic achievement (e.g., bear arms, an armour-bearer) either by hereditary right, grant, matriculatio...

「東京急行電鉄」はこの項目へ転送されています。2019年9月1日まで「東京急行電鉄株式会社」を名乗っていた会社法人については「東急」をご覧ください。 東急 > 東急電鉄 東急電鉄株式会社[1]TOKYU RAILWAYS Co., Ltd.[2] 東急電鉄本社が入居する渋谷ファーストプレイス種類 株式会社略称 東急、TKK本社所在地 日本〒150-8533[1]東京都渋谷区神泉町8番16号...

 

サンクトペテルブルク北郊のヴァスケロヴォ駅を発車するエレクトリーチカ(ЭР2型) モスクワ市内のヤロスラフスキー駅に停車中のエレクトリーチカ(ЭД4M型) 車内の様子。外に見える駅はサンクトペテルブルク西郊のソスノーヴァヤ・ポリャーナ駅。 エレクトリーチカ(ロシア語: электри́чка, ウクライナ語: електри́чка)は、ロシア、ウクライナ�...