Chemical ionization

A schematic diagram of chemical ionization source

Chemical ionization (CI) is a soft ionization technique used in mass spectrometry.[1][2] This was first introduced by Burnaby Munson and Frank H. Field in 1966.[3] This technique is a branch of gaseous ion-molecule chemistry.[2] Reagent gas molecules (often methane or ammonia)[4] are ionized by electron ionization to form reagent ions, which subsequently react with analyte molecules in the gas phase to create analyte ions for analysis by mass spectrometry. Negative chemical ionization (NCI), charge-exchange chemical ionization, atmospheric-pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) are some of the common variants of the technique. CI mass spectrometry finds general application in the identification, structure elucidation and quantitation of organic compounds[5] as well as some utility in biochemical analysis.[5] Samples to be analyzed must be in vapour form, or else (in the case of liquids or solids), must be vapourized before introduction into the source.

Principles of operation

The chemical ionization process generally imparts less energy to an analyte molecule than does electron impact (EI) ionization, resulting in less fragmentation[2] and usually a simpler spectrum. The amount of fragmentation, and therefore the amount of structural information produced by the process can be controlled to some degree by selection of the reagent ion.[2] In addition to some characteristic fragment ion peaks, a CI spectrum usually has an identifiable protonated molecular ion peak [M+1]+, allowing determination of the molecular mass.[6] CI is thus useful as an alternative technique in cases where EI produces excessive fragmentation of the analyte, causing the molecular-ion peak to be weak or completely absent.

Instrumentation

The CI source design for a mass spectrometer is very similar to that of the EI source. To facilitate the reactions between the ions and molecules, the chamber is kept relatively gas tight at a pressure of about 1 torr.[7] Electrons are produced externally to the source volume (at a lower pressure of 10−4 torr[7] or below) by heating a metal filament which is made of tungsten, rhenium, or iridium.[5] The electrons are introduced through a small aperture in the source wall at energies 200–1000 eV[7][8] so that they penetrate to at least the centre of the box.[8] In contrast to EI, the magnet and the electron trap are not needed for CI, since the electrons do not travel to the end of the chamber. Many modern sources are dual or combination EI/CI sources and can be switched from EI mode to CI mode and back in seconds.[9]

Mechanism

A CI experiment involves the use of gas phase acid-base reactions in the chamber. Some common reagent gases include: methane, ammonia, water and isobutane. Inside the ion source, the reagent gas is present in large excess compared to the analyte. Electrons entering the source will mainly ionize the reagent gas because it is in large excess compared to the analyte. The primary reagent ions then undergo secondary ion/molecule reactions (as below) to produce more stable reagent ions which ultimately collide and react with the lower concentration analyte molecules to form product ions. The collisions between reagent ions and analyte molecules occur at close to thermal energies, so that the energy available to fragment the analyte ions is limited to the exothermicity of the ion-molecule reaction. For a proton transfer reaction, this is just the difference in proton affinity between the neutral reagent molecule and the neutral analyte molecule.[8] This results in significantly less fragmentation than does 70 eV electron ionization (EI).

The following reactions are possible with methane as the reagent gas.

Primary ion formation

Secondary reagent ions

Product ion formation

   (protonation)
   ( abstraction)
   (adduct formation)
   (charge exchange)

If ammonia is the reagent gas,

For isobutane as the reagent gas,

Self chemical ionization is possible if the reagent ion is an ionized form of the analyte.[10]

Advantages and limitations

One of the main advantages of CI over EI is the reduced fragmentation as noted above, which for more fragile molecules, results in a peak in the mass spectrum indicative of the molecular weight of the analyte. This proves to be a particular advantage for biological applications where EI often does not yield useful molecular ions in the spectrum.[8] The spectra given by CI are simpler than EI spectra and CI can be more sensitive[5] than other ionization methods, at least in part to the reduced fragmentation which concentrates the ion signal in fewer and therefore more intense peaks. The extent of fragmentation can be somewhat controlled by proper selection of reagent gases.[7][8] Moreover, CI is often coupled to chromatographic separation techniques, thereby improving its usefulness in identification of compounds.[11] As with EI, the method is limited compounds that can be vapourized in the ion source. The lower degree of fragmentation can be a disadvantage in that less structural information is provided. Additionally, the degree of fragmentation and therefore the mass spectrum, can be sensitive to source conditions such as pressure, temperature, and the presence of impurities (such as water vapour) in the source. Because of this lack of reproducibility, libraries of CI spectra have not been generated for compound identification.[8]

Applications

Peroxynitrate chemical ionization mass spectrometer at the US National Oceanic and Atmospheric Administration

CI mass spectrometry is a useful tool in structure elucidation of organic compounds.[3] This is possible with CI, because formation of [M+1]+ eliminates a stable molecule, which can be used to guess the functional groups present.[3] Besides that, CI facilitates the ability to detect the molecular ion peak, due to less extensive fragmentation.[3] Chemical ionization can also be used to identify and quantify an analyte present in a sample, by coupling chromatographic separation techniques to CI[3] such as gas chromatography (GC), high performance liquid chromatography (HPLC) and capillary electrophoresis (CE). This allows selective ionization of an analyte from a mixture of compounds, where accurate and precised results can be obtained.

Variants

Negative chemical ionization

Chemical ionization for gas phase analysis is either positive or negative.[12] Almost all neutral analytes can form positive ions through the reactions described above.

In order to see a response by negative chemical ionization (NCI, also NICI), the analyte must be capable of producing a negative ion (stabilize a negative charge) for example by electron capture ionization. Because not all analytes can do this, using NCI provides a certain degree of selectivity that is not available with other, more universal ionization techniques (EI, PCI). NCI can be used for the analysis of compounds containing acidic groups or electronegative elements (especially halogens).[6]: 23 Moreover, negative chemical ionization is more selective and demonstrates a higher sensitivity toward oxidizing agents and alkylating agents.[13]

Because of the high electronegativity of halogen atoms, NCI is a common choice for their analysis. This includes many groups of compounds, such as PCBs,[13] pesticides, and fire retardants.[13] Most of these compounds are environmental contaminants, thus much of the NCI analysis that takes place is done under the auspices of environmental analysis. In cases where very low limits of detection are needed, environmental toxic substances such as halogenated species, oxidizing and alkylating agents[12] are frequently analyzed using an electron capture detector coupled to a gas chromatograph.

Negative ions are formed by resonance capture of a near-thermal energy electron, dissociative capture of a low energy electron and via ion-molecular interactions such as proton transfer, charge transfer and hydride transfer.[12] Compared to the other methods involving negative ion techniques, NCI is quite advantageous, as the reactivity of anions can be monitored in the absence of a solvent. Electron affinities and energies of low-lying valencies can be determined by this technique as well.[12]

Charge-exchange chemical ionization

This is also similar to CI and the difference lies in the production of a radical cation with an odd number of electrons. The reagent gas molecules are bombarded with high energy electrons and the product reagent gas ions abstract electrons from the analyte to form radical cations. The common reagent gases used for this technique are toluene, benzene, NO, Xe, Ar and He.

Careful control over the selection of reagent gases and the consideration toward the difference between the resonance energy of the reagent gas radical cation and the ionization energy of the analyte can be used to control fragmentation.[7] The reactions for charge-exchange chemical ionization are as follows.

Atmospheric pressure chemical ionization source

Atmospheric-pressure chemical ionization

Chemical ionization in an atmospheric pressure electric discharge is called atmospheric pressure chemical ionization (APCI), which usually uses water as the reagent gas. An APCI source is composed of a liquid chromatography outlet, nebulizing the eluent, a heated vaporizer tube, a corona discharge needle and a pinhole entrance to 10−3 torr vacuum.[11] The analyte is a gas or liquid spray and ionization is accomplished using an atmospheric pressure corona discharge. This ionization method is often coupled with high performance liquid chromatography where the mobile phase containing eluting analyte sprayed with high flow rates of nitrogen or helium and the aerosol spray is subjected to a corona discharge to create ions. It is applicable to relatively less polar and thermally less stable compounds. The difference between APCI and CI is that APCI functions under atmospheric pressure, where the frequency of collisions is higher. This enables the improvement in sensitivity and ionization efficiency.[7]

See also

References

  1. ^ Fales HM, Milne GW, Pisano JJ, Brewer HB, Blum MS, MacConnell JG, Brand J, Law N (1972). "Biological applications of electron ionization and chemical ionization mass spectrometry". Recent Prog. Horm. Res. 28: 591–626. PMID 4569234.
  2. ^ a b c d Field, Frank H. (2002). "Chemical ionization mass spectrometry". Accounts of Chemical Research. 1 (2): 42–49. doi:10.1021/ar50002a002.
  3. ^ a b c d e Alex. G. Harrison (15 June 1992). Chemical Ionization Mass Spectrometry, Second Edition. CRC Press. pp. 1–. ISBN 978-0-8493-4254-7.
  4. ^ "Mass Spectrometry Facility | CI". www.chm.bris.ac.uk. Retrieved 2022-04-30.
  5. ^ a b c d Hunt, Donald F.; McEwen, Charles N.; Harvey, T. Michael. (2002). "Positive and negative chemical ionization mass spectrometry using a Townsend discharge ion source". Analytical Chemistry. 47 (11): 1730–1734. doi:10.1021/ac60361a011.
  6. ^ a b de Hoffmann, Edmond; Vincent Stroobant (2003). Mass Spectrometry: Principles and Applications (Second ed.). Toronto: John Wiley & Sons, Ltd. p. 14. ISBN 978-0-471-48566-7.
  7. ^ a b c d e f Dass, Chhabil (2007). Fundamentals of contemporary mass spectrometry ([Online-Ausg.]. ed.). Hoboken, N.J.: Wiley-Interscience. ISBN 9780470118498.
  8. ^ a b c d e f Vestal, Marvin L. (2000). "Methods of Ion Generation" (PDF). Chemical Reviews. 101 (2): 361–375. doi:10.1021/cr990104w.
  9. ^ Gross, J. H. (2004). Mass Spectrometry. Berlin, Heidelberg: Springer. pp. 331–354. ISBN 978-3-642-07388-5.
  10. ^ Sahba Ghaderi; P. S. Kulkarni; Edward B. Ledford; Charles L. Wilkins; Michael L. Gross (1981). "Chemical ionization in Fourier transform mass spectrometry". Analytical Chemistry. 53 (3): 428–437. doi:10.1021/ac00226a011.
  11. ^ a b Byrdwell, William Craig (2001-04-01). "Atmospheric pressure chemical ionization mass spectrometry for analysis of lipids". Lipids. 36 (4): 327–346. doi:10.1007/s11745-001-0725-5. ISSN 0024-4201. PMID 11383683. S2CID 4017177.
  12. ^ a b c d Dougherty R.C. (1981). "Negative chemical ionization mass spectrometry: applications in environmental analytical chemistry". Biomed. Mass Spectrom. 8 (7): 283–292. doi:10.1002/bms.1200080702. PMID 7025931.
  13. ^ a b c Dougherty, Ralph C. (2002). "Negative chemical ionization mass spectrometry". Analytical Chemistry. 53 (4): 625–636. doi:10.1021/ac00227a003.

Bibliography

  • Harrison, Alex. G. (1992). Chemical ionization mass spectrometry (2. ed.). Boca Raton, Fla. [u.a.]: CRC Press. ISBN 9780849342547.
  • Hunt, Donald F.; McEwen, Charles N.; Harvey, T. Michael. (2002). "Positive and negative chemical ionization mass spectrometry using a Townsend discharge ion source". Analytical Chemistry. 47 (11): 1730–1734. doi:10.1021/ac60361a011.
  • Dass, Chhabil (2007). Fundamentals of contemporary mass spectrometry ([Online-Ausg.]. ed.). Hoboken, N.J.: Wiley-Interscience. ISBN 9780470118498.

Read other articles:

Nemanja Radonjić oleh Dmitry Pukalik 2017Informasi pribadiNama lengkap Nemanja RadonjićTanggal lahir 15 Februari 1996 (umur 28)Tempat lahir Niš, FR YugoslaviaTinggi 185 cm (6 ft 1 in)Posisi bermain PenyerangInformasi klubKlub saat ini Red Star BelgradeNomor 49Karier senior*Tahun Tim Tampil (Gol)2017 – Red Star Belgrade 28 (5)Tim nasional2017 – Serbia 5 (0) * Penampilan dan gol di klub senior hanya dihitung dari liga domestik Nemanja Radonjić (lahir 15 Februari 199...

 

 

Bopyridae Klasifikasi ilmiah Kerajaan: Animalia Filum: Arthropoda Subfilum: Crustacea Kelas: Malacostraca Ordo: Isopoda Subordo: Cymothoida Superfamili: Bopyroidea Famili: BopyridaeRafinesque, 1815 Genera lihat teks Udang yang memiliki tonjolan menunjukkan parasitisme bopyridae. Bopyridae adalah famili dari krustasea isopoda dalam subordo Cymothoida.[1] Anggota dari famili ini adalah ektoparasit dari kepiting dan udang. Bopyridae hidup di rongga insang atau di bawah karapas, di mana ...

 

 

Voce principale: Marina Militare (Italia). Corpo di commissariato militare marittimoStemma della Marina Descrizione generaleNazione Italia ServizioMinistero della difesa, Marina Militare TipoMarina Militare RuoloCorpo della Marina PatronoSanta Barbara, patrona della Marina Militare SimboliBandiera Bandiera di bompresso- Voci su marine militari presenti su Wikipedia Il Corpo di commissariato militare marittimo (abbreviato CM) è un corpo tecnico composto da soli ufficiali della Marina Mi...

PemberitahuanTemplat ini mendeteksi bahwa artikel bahasa ini masih belum dinilai kualitasnya oleh ProyekWiki Bahasa dan ProyekWiki terkait dengan subjek. Perhatian: untuk penilai, halaman pembicaraan artikel ini telah diisi sehingga penilaian akan berkonflik dengan isi sebelumnya. Harap salin kode dibawah ini sebelum menilai. {{PW Bahasa|importance=|class=}} Terjadi [[false positive]]? Silakan laporkan kesalahan ini. 13.55, Jumat, 29 Maret, 2024 (UTC) • hapus singgahan Seban...

 

 

Italian Cardinal, philosopher and theologian This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Angelo Scola – news · newspapers · books · scholar · JSTOR (April 2019) (Learn how and when to remove...

 

 

International Media DistributionCompany typeSubsidiaryIndustryEthnic mediaBroadcastingFounded1998; 26 years ago (1998)HeadquartersCentennial, Colorado, United StatesServicesBroadcastingMarketingParentNBCUniversal Media GroupWebsitewww.imediadistribution.com International Media Distribution (IMD) (formerly International Networks), a division of NBCUniversal, is a leading provider of in-language networks which facilitates the distribution of Asian, European, Middle Eastern and...

Cet article est une ébauche concernant une personnalité moldave et une chanteuse. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Geta BurlacuGeta Burlacu au Concours Eurovision en 2008.BiographieNaissance 22 juillet 1974 (49 ans)BălțiNationalité moldaveActivités Chanteuse, musicienne de jazzPériode d'activité depuis 1993Autres informationsTessiture ContraltoInstrument ViolonGenre artistique JazzSit...

 

 

Pour les articles homonymes, voir Megalomys desmarestii. Pilori de la région de la Dalécarlie, Suède (au musée nordique de Stockholm). Un pilori est un poteau ou un dispositif vertical auquel un condamné est attaché temporairement pour être vu et conspué par la foule. Il est censé punir le coupable, impressionner le public, et dissuader d'éventuels criminels, qui craindront de se retrouver un jour en pareille situation. Étymologie L'étymologie la plus vraisemblable qualifie le mo...

 

 

The DealDVD promotionSutradaraSteven SchachterProduserIrene LitinskyKeri NakamotoMichael PrupasDitulis olehWilliam H. MacySteven SchachterBerdasarkanThe Dealoleh Peter LefcourtPemeranWilliam H. Macy Meg RyanJason RitterElliott GouldLL Cool JPenata musikJeff BealSinematograferPaul SarossyPenyuntingMatt FriedmanSusan MaggiPerusahaanproduksiMuse Entertainment EnterprisesDistributorPeace Arch EntertainmentTanggal rilis 22 Januari 2008 (2008-01-22) (Sundance Film Festival) Durasi100...

This article uses bare URLs, which are uninformative and vulnerable to link rot. Please consider converting them to full citations to ensure the article remains verifiable and maintains a consistent citation style. Several templates and tools are available to assist in formatting, such as reFill (documentation) and Citation bot (documentation). (August 2022) (Learn how and when to remove this message) Alumni Stadium, home of the Boston College Eagles Fall River, Massachusetts native, Bert Pa...

 

 

Fes redirects here. For other uses, see FES. City in Fès-Meknès, MoroccoFez فاسCityFrom the top down: Al-Qarawiyyin Mosque/University, gates of the Royal Palace, and Fes el Bali a.k.a. the Medina of Fez.FezLocation of Fez within MoroccoShow map of MoroccoFezFez (Africa)Show map of AfricaCoordinates: (1,100,000) 34°02′36″N 05°00′12″W / 34.04333°N 5.00333°W / 34.04333; -5.00333Country MoroccoRegionFès-MeknèsFounded789Founded byIdrisid dynastyGover...

 

 

Ethnic group in Russia Ethnic group Murmansk FinnsTotal population273LanguagesRussian, FinnishReligionLutheranismRelated ethnic groupsFinnish people, Ingrian Finns, Kvens Murmansk Finns or Kola Finns (Finnish: Muurmanninsuomalaiset, Kuolansuomalaiset) are a group of Finns who live or lived in Murmansk Oblast. They came to Murmansk around 1860 during the Finnish famine of 1866–68.[1] However, there was another immigration period in 1900, due to the building of the Kirov Railway. In 2...

Collection of star charts from antiquity This article contains special characters. Without proper rendering support, you may see question marks, boxes, or other symbols. Star list with distance information, Uruk (Iraq), 320-150 BC, the list gives each constellation, the number of stars and the distance information to the next constellation in ells. Babylonian astronomy collated earlier observations and divinations into sets of Babylonian star catalogues, during and after the Kassite rule over...

 

 

Motif of medieval romance The Green Knight has survived beheading by Gawain and carries his own head in this 14th-century manuscript. The beheading game is a literary trope found in Irish mythology and medieval chivalric romance. The trope consists of a stranger who arrives at a royal court and challenges a hero to an exchange of blows: the hero may decapitate the stranger, but the stranger may then inflict the same wound upon the hero. The supernatural nature of the stranger, which makes th...

 

 

Salon beralih ke halaman ini. Untuk salon sebagai alat pengeras suara, lihat Pengeras suara dan Pengeras suara genggam. Lihat entri salon kecantikan di kamus bebas Wiktionary. Interior salon kecantikan Salon kecantikan adalah bentuk usaha yang berhubungan dengan perawatan kosmetika, wajah, dan rambut, baik untuk laki-laki maupun perempuan.[1] Variasi lain dari jenis usaha salon kecantikan adalah salon rambut, dan salon tangan dan kuku (manikur). Ada perbedaan yang jelas antara salon k...

Radio station in Kennewick, Washington For the radio station licensed to Yakima, Washington that held the call sign KJOX at 1390 AM from 2004 to 2012, see KTCR (AM). KJOXKennewick, WashingtonBroadcast areaTri-CitiesFrequency1340 kHzBranding1340 ESPN Tri-CitiesProgrammingFormatSportsAffiliationsESPN RadioWestwood OneOwnershipOwnerStephens Media Group(SMG - Tri-Cities, LLC)HistoryFirst air date1945 (as KPKW)Former call signsKPKW (1945–1962)KGRS (1962–1965)KSMK (1965–1973)KOTY (1973–1988...

 

 

Award given by the Critics Choice Association Critics' Choice Movie Award for Best Original Screenplay2023 recipients: Greta Gerwig (left) & Noah Baumbach (right)Awarded forBest Original Screenwriting of a Motion PictureLocationLos Angeles, CaliforniaPresented byCritics Choice AssociationFirst awardedEmma Thompson for Sense and Sensibility (1995)Currently held byGreta Gerwig & Noah Baumbach for Barbie (2023)Websitewww.criticschoice.com The Critics' Choice Movie Award for Best Original...

 

 

BAE Systems HawkBAE Hawk T.1 trainer dari Skuadron 208 RAF.TipePesawat Latih militerProdusenHawker Siddeley British Aerospace (1977-1999) BAE Systems (mulai 1999)Terbang perdana1974Pengguna utamaBritania RayaPengguna lainIndonesiaMalaysiaAustraliaHarga satuan£18 Juta (Rp278,67 Miliar) (2003)VarianT-45 Goshawk BAE Systems Hawk adalah jet tempur ringan latih (trainer) produksi BAE Hawk sejak 1974. BAE Hawk adalah sebuah perusahaan dari Britania Raya. Hawk merupakan sebuah pesawat jet latih (tr...

Not to be confused with USS General George M. Randall (AP-115). USS Randall (APA-224), circa in 1945 History United States NameRandall NamesakeRandall County, Texas Orderedas a Type VC2-S-AP5 hull, MCE hull 572[1] BuilderPermanente Metals Corporation, Richmond, California Yard number572[1] Laid down15 September 1944 Launched15 November 1944 Sponsored byMrs. Donald D. Dick Commissioned12 December 1944 Decommissioned6 April 1956 Stricken1 July 1960 Identification Hull symbo...

 

 

I. Liga 1935-1936 Competizione Fußball-Bundesliga Sport Calcio Edizione 25ª Organizzatore ÖFB Date dal 31 agosto 1935al 24 maggio 1936 Luogo  Austria Partecipanti 12 Cronologia della competizione 1934-35 1936-37 Manuale L'edizione 1935-36 della I. Liga vide la vittoria finale del SK Admira Wien. Capocannoniere del torneo fu Wilhelm Hahnemann del SK Admira Wien con 23 reti. Classifica finale Classifica G V N P GF GS Pt 1 SK Admira Wien 22 17 3 2 77 36 37 2 First Vienna FC 22 1...