Cartesian oval

Example of Cartesian ovals.

In geometry, a Cartesian oval is a plane curve consisting of points that have the same linear combination of distances from two fixed points (foci). These curves are named after French mathematician René Descartes, who used them in optics.

Definition

Let P and Q be fixed points in the plane, and let d(P, S) and d(Q, S) denote the Euclidean distances from these points to a third variable point S. Let m and a be arbitrary real numbers. Then the Cartesian oval is the locus of points S satisfying d(P, S) + m d(Q, S) = a. The two ovals formed by the four equations d(P, S) + m d(Q, S) = ± a and d(P, S) − m d(Q, S) = ± a are closely related; together they form a quartic plane curve called the ovals of Descartes.[1]

Special cases

In the equation d(P, S) + m d(Q, S) = a, when m = 1 and a > d(P, Q) the resulting shape is an ellipse. In the limiting case in which P and Q coincide, the ellipse becomes a circle. When it is a limaçon of Pascal. If and the equation gives a branch of a hyperbola and thus is not a closed oval.

Polynomial equation

The set of points (x, y) satisfying the quartic polynomial equation[1][2]

where c is the distance between the two fixed foci P = (0, 0) and Q = (c, 0), forms two ovals, the sets of points satisfying the two of the following four equations

[2]

that have real solutions. The two ovals are generally disjoint, except in the case that P or Q belongs to them. At least one of the two perpendiculars to PQ through points P and Q cuts this quartic curve in four real points; it follows from this that they are necessarily nested, with at least one of the two points P and Q contained in the interiors of both of them.[2] For a different parametrization and resulting quartic, see Lawrence.[3]

Applications in optics

As Descartes discovered, Cartesian ovals may be used in lens design. By choosing the ratio of distances from P and Q to match the ratio of sines in Snell's law, and using the surface of revolution of one of these ovals, it is possible to design a so-called aplanatic lens, that has no spherical aberration.[4]

Additionally, if a spherical wavefront is refracted through a spherical lens, or reflected from a concave spherical surface, the refracted or reflected wavefront takes on the shape of a Cartesian oval. The caustic formed by spherical aberration in this case may therefore be described as the evolute of a Cartesian oval.[5]

History

The ovals of Descartes were first studied by René Descartes in 1637, in connection with their applications in optics.

These curves were also studied by Newton beginning in 1664. One method of drawing certain specific Cartesian ovals, already used by Descartes, is analogous to a standard construction of an ellipse by a pinned thread. If one stretches a thread from a pin at one focus to wrap around a pin at a second focus, and ties the free end of the thread to a pen, the path taken by the pen, when the thread is stretched tight, forms a Cartesian oval with a 2:1 ratio between the distances from the two foci.[6] However, Newton rejected such constructions as insufficiently rigorous.[7] He defined the oval as the solution to a differential equation, constructed its subnormals, and again investigated its optical properties.[8]

The French mathematician Michel Chasles discovered in the 19th century that, if a Cartesian oval is defined by two points P and Q, then there is in general a third point R on the same line such that the same oval is also defined by any pair of these three points.[2]

James Clerk Maxwell rediscovered these curves, generalized them to curves defined by keeping constant the weighted sum of distances from three or more foci, and wrote a paper titled Observations on Circumscribed Figures Having a Plurality of Foci, and Radii of Various Proportions. An account of his results, titled On the description of oval curves, and those having a plurality of foci, was written by J.D. Forbes and presented to the Royal Society of Edinburgh in 1846, when Maxwell was at the young age of 14 (almost 15).[6][9][10]

See also

References

  1. ^ a b O'Connor, John J.; Robertson, Edmund F., "Cartesian Oval", MacTutor History of Mathematics Archive, University of St Andrews
  2. ^ a b c d Rice, John Minot; Johnson, William Woolsey (1888), An elementary treatise on the differential calculus founded on the method of rates or fluxions (4th ed.), J. Wiley, pp. 295–299.
  3. ^ Lawrence, J. Dennis (1972), A Catalog of Special Plane Curves, Dover, pp. 155–157, ISBN 0-486-60288-5.
  4. ^ Dijksterhuis, Fokko Jan (2004), Lenses and waves: Christiaan Huygens and the mathematical science of optics in the seventeenth century, Archimedes, New studies in the history and philosophy of science and technology, vol. 9, Springer-Verlag, pp. 13–14, ISBN 978-1-4020-2697-3.
  5. ^ Percival, Archibald Stanley (1899), "Chapter XVI. Contour of the refracted wave-front. Caustics", Optics, a manual for students, Macmillan, pp. 312–327.
  6. ^ a b Gardner, Martin (2007), The Last Recreations: Hydras, Eggs, and Other Mathematical Mystifications, Springer-Verlag, pp. 46–49, ISBN 978-0-387-25827-0.
  7. ^ Guicciardini, Niccolò (2009), Isaac Newton on mathematical certainty and method, Transformations: Studies in the History of Science and Technology, vol. 4, MIT Press, pp. 49 & 104, ISBN 978-0-262-01317-8.
  8. ^ Whiteside, Derek Thomas (2008), The Mathematical Papers of Isaac Newton, Vol. 3, Cambridge University Press, pp. 139, 495, & 551, ISBN 978-0-521-04581-0.
  9. ^ The Scientific Letters and Papers of James Clerk Maxwell, Edited by P.M. Harman, Volume I, 1846–1862, Cambridge University Press, pg. 35
  10. ^ MacTutor History of Mathematics - Biographies - Maxwell

Read other articles:

Gereja YesusGereja Paroki Santa Maria dari YesusItalia: Chiesa del Gesùcode: it is deprecated Gereja Yesus, Palermo38°06′46.53″N 13°21′41.98″E / 38.1129250°N 13.3616611°E / 38.1129250; 13.3616611Koordinat: 38°06′46.53″N 13°21′41.98″E / 38.1129250°N 13.3616611°E / 38.1129250; 13.3616611LokasiPalermo, SisiliaNegara ItaliaDenominasiGereja Katolik RomaArsitekturStatusGereja parokiStatus fungsionalAktifGayaBarok SisiliaP...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Januari 2023. Fenobukarb Nama Nama IUPAC (2-Butan-2-ylphenyl) N-methylcarbamate Penanda Nomor CAS 3766-81-2 Y Model 3D (JSmol) Gambar interaktif 3DMet {{{3DMet}}} ChEBI CHEBI:34304 Y ChEMBL ChEMBL226650 Y ChemSpider 18452 Y Nomor EC KEGG C14425&#...

 

Construction of ships and floating vessels This article is about the construction of ships. For the song, see Shipbuilding (song). Shipwright redirects here. For other uses, see Shipwright (disambiguation). Not to be confused with Boat building. Admiralty law History Code of Hammurabi Corpus Juris Civilis Digesta Ordinamenta et consuetudo maris Amalfian Laws Hanseatic League Features Fishing Illegal Fisheries law Maritime transport Shipping/Ferry Cargo Freight Merchant marine Cargo ship Passe...

French soldier Claude de Roux, chevalier de Saint-LaurentGovernor of Saint ChristopheIn officeApril 1666 – February 1689Preceded byCharles de SalesSucceeded byCharles de Pechpeyrou-Comminges de GuitautGovernor general of the French Antilles (acting)In officeMarch 1683 – June 1684Preceded byCharles de Courbon de BlénacSucceeded byCharles de Courbon de BlénacGovernor of Martinique (interim)In officeFebruary 1689 – 31 March 1689Preceded byCharles de Pechpeyrou-...

 

Pour les articles homonymes, voir Violet (homonymie). La dame en violet, de Pál Szinyei Merse (1874), Galerie nationale hongroise. Le violet est un champ chromatique qui désigne des couleurs situées sur le cercle chromatique entre les pourpres et les bleus. Définition Nom de couleur Comme nom de couleur, violet fait partie, avec orange ou gris, de ceux qui n'apparaissent dans les langues qu'après les divisions principales des champs chromatiques. Il est attesté en français en 1520 dan...

 

Disambiguazione – Se stai cercando altri significati, vedi Baby sitter (disambigua). Mary Cassatt, Nurse Reading to a Little Girl, 1895 Una baby sitter (/ˈbeɪbisɪtə(r)/), scritto anche babysitter o baby-sitter[1], e in italiano storicamente bambinaia[2][3], è una persona che per lavoro si occupa di accudire (a tempo pieno oppure occasionalmente) i figli di altre persone. Nel caso in cui la bambinaia svolga un'attività a tempo pieno, in modo continuativo negli ...

Untuk kegunaan lain, lihat Coney Island (disambiguasi). Pemandangan udara Coney Island. Coney Island adalah lingkungan semenanjung dan kawasan hiburan di bagian barat daya wilayah Brooklyn di Kota New York. Lingkungan ini dibatasi oleh Pantai Brighton di timur, Teluk New York Bawah di selatan dan barat, dan Gravesend di utara dan mencakup subbagian Sea Gate di baratnya. Ensiklopedia Kota New York menganggap wilayah sebelah barat Ocean Parkway (termasuk Sea Gate dan Nortons Point Light) sebaga...

 

Makan siang di Garuda Indonesia kelas ekonomi. Gaya Jepang, dengan daging sapi teriyaki dan nasi, dorayaki, mi soba, dan minuman. Makanan maskapai penerbangan atau makanan dalam penerbangan adalah makanan yang disajikan kepada penumpang oleh maskapai penerbangan dalam penerbangan komersial. Semua makanan disiapkan oleh bagian katering maskapai penerbangan dan biasanya disajikan kepada penumpang menggunakan troli layanan maskapai. Makanan ini bisa bervariasi dalam segi kualitas dan kuantitas, ...

 

Japanese poet In this Japanese name, the surname is Kobayashi. Kobayashi Issa小林 一茶Issa's portrait drawn by Muramatsu Shunpo 1772-1858 (Issa Memorial Hall, Shinano, Nagano, Japan)BornKobayashi Nobuyuki (小林 信之)(1763-06-15)June 15, 1763Near Shinano-machi, Shinano Province, JapanDiedJanuary 5, 1828(1828-01-05) (aged 64)Shinano-machi, Shinano Province, JapanPen nameIssa (一茶)OccupationPoetNationalityJapanese Kobayashi Issa (小林 一茶, June 15, 1763 – January 5, 18...

Basilika Bunda Maria Penolong Umat KristianiBasilika Minor Bunda Maria Penolong Umat KristianiPortugis: Basílica Nossa Senhora AuxiliadoraBasilika Bunda Maria Penolong Umat KristianiLokasiNiteróiNegara BrasilDenominasiGereja Katolik RomaArsitekturStatusBasilika minorStatus fungsionalAktif Basilika Bunda Maria Penolong Umat Kristiani (Portugis: Basílica Nossa Senhora Auxiliadora) adalah sebuah gereja basilika minor Katolik yang terletak di Niterói, Brasil. Basilika ini ditetap...

 

Cet article est une ébauche concernant un film américain. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les conventions filmographiques. Pour les articles homonymes, voir Speedy. En vitesse Données clés Pour plus de détails, voir Fiche technique et Distribution. modifier Affiche promotionnelle du film En vitesse (Speedy) est un film muet américain réalisé par Ted Wilde, sorti en 1928. Synopsis Harold Swift, surnommé Speedy, vit de petits boulots à...

 

For other uses, see Ace of aces (disambiguation). 1986 video gameAce of AcesDeveloper(s) Artech Paragon Programming (CPC, Spectrum, MSX)Distinctive Software (Atari 8-bit)Nova Game Design (7800)Nexa Corporation (MS-DOS)Tiertex (Master System)[1] Publisher(s)NA: AccoladeEU: U.S. GoldProgrammer(s)Stuart EasterbrookArtist(s)Rick BanksGrant CampbellComposer(s)Greg Mark (MS-DOS)Platform(s)Commodore 64, Amstrad CPC, ZX Spectrum, MSX, Atari 8-bit, Atari 7800, MS-DOS, Master SystemRelease1986G...

Військово-музичне управління Збройних сил України Тип військове формуванняЗасновано 1992Країна  Україна Емблема управління Військово-музичне управління Збройних сил України — структурний підрозділ Генерального штабу Збройних сил України призначений для планува...

 

The courts of the United States are closely linked hierarchical systems of courts at the federal and state levels. The federal courts form the judicial branch of the US government and operate under the authority of the United States Constitution and federal law. The state and territorial courts of the individual U.S. states and territories operate under the authority of the state and territorial constitutions and state and territorial law. Federal statutes that refer to the courts of the Uni...

 

Mississippi River Band of Chippewa Indians (Ojibwe: Gichi-ziibiwininiwag) or simply the Mississippi Chippewa, are a historical Ojibwa Band inhabiting the headwaters of the Mississippi River and its tributaries in present-day Minnesota. According to the oral history of the Mississippi Chippewa, they were primarily of the southern branch of Ojibwe who spread from the Fifth Stopping Place of Baawiting (Sault Ste. Marie region) along Lake Superior's southern shores until arriving at the Sixth Sto...

Disambiguazione – Se stai cercando l'omonima casa editrice, vedi Hoepli (casa editrice). Ulrico Hoepli Ulrico Hoepli, italianizzazione di Johannes Ulrich Höpli (Tuttwil, 18 febbraio 1847 – Milano, 24 gennaio 1935), è stato un editore svizzero naturalizzato italiano. Indice 1 Biografia 2 Attività editoriale 3 Mecenatismo 4 Onorificenze 5 Note 6 Bibliografia 7 Voci correlate 8 Altri progetti 9 Collegamenti esterni Biografia Milano: le insegne della libreria Hoepli (sulla destra) all'ing...

 

Argentine motor car company Industrias Kaiser ArgentinaAerial view of the IKA plant in CórdobaCompany typeSubsidiaryIndustryAutomotiveFounded1956Defunct1975; 49 years ago (1975)FateAcquired by Renault in 1967, took over completely in 1975[1]SuccessorRenault ArgentinaHeadquartersCórdoba Province, ArgentinaProductsAutomobilesBrands Kaiser Jeep Renault Number of employees8,500 (1965)ParentKaiser Motors (1956–1967)Renault (1967–1975) Industrias Kaiser Argentina S.A...

 

Disambiguazione – Se stai cercando altri significati, vedi Serie B 1967-1968 (disambigua). Serie B 1967-1968 Competizione Serie B Sport Calcio Edizione 36ª Organizzatore Lega Nazionale Professionisti Date dal 10 settembre 1967al 21 luglio 1968 Luogo  Italia Partecipanti 21 Formula girone unico Risultati Vincitore Palermo(2º titolo) Altre promozioni VeronaPisa Retrocessioni VeneziaMessinaNovaraPotenza Statistiche Miglior marcatore Lucio Mujesan (19) Incontri disputa...

Literary genre This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Christian literature – news · newspapers · books · scholar · JSTOR (September 2007) (Learn h...

 

Gold Cup 2005 Généralités Sport Football Organisateur(s) CONCACAF Éditions 18e Lieu(x) États-Unis Date du 6 juillet 2005 au 24 juillet 2005 Participants 12 équipes Épreuves 25 rencontres Site(s) 7 stades Site web officiel (en) Site officiel Palmarès Tenant du titre Mexique (7) Vainqueur États-Unis (3) Finaliste Panama Demi-finalistes Honduras Colombie Buts 74 (2,96 but/match) Meilleur joueur Luis Tejada Meilleur(s) buteur(s) DaMarcus Beasley (3) Navigation Mexique-États-Unis 2003 �...