In October 2016, astronomers reported that the very basic chemical ingredients of life—the carbon–hydrogen molecule (CH, or methylidyne radical), the carbon–hydrogen positive ion (CH+) and the carbon ion (C+)—are created, in large part, using energy from the ultraviolet light of nearby stars, rather than in other ways, such as turbulent events related to supernovae and young stars, as thought earlier.[3]
Bond length
The length of the carbonhydrogen bond varies slightly with the hybridisation of the carbon atom. A bond between a hydrogen atom and an sp2 hybridised carbon atom is about 0.6% shorter than between hydrogen and sp3 hybridised carbon. A bond between hydrogen and sp hybridised carbon is shorter still, about 3% shorter than sp3 C-H. This trend is illustrated by the molecular geometry of ethane, ethylene and acetylene.[citation needed]
Comparison of bond lengths in simple hydrocarbons[4]
The C−H bond in general is very strong, so it is relatively unreactive. In several compound classes, collectively called carbon acids, the C−H bond can be sufficiently acidic for proton removal. Unactivated C−H bonds are found in alkanes and are not adjacent to a heteroatom (O, N, Si, etc.). Such bonds usually only participate in radical substitution. Many enzymes are known, however, to effect these reactions.[5]
Although the C−H bond is one of the strongest, it varies over 30% in magnitude for fairly stable organic compounds, even in the absence of heteroatoms.[6][7]
^Bollinger, J. M. Jr., Broderick, J. B. "Frontiers in enzymatic C-H-bond activation" Current Opinion in Chemical Biology 2009, vol. 13, page 51-7. doi:10.1016/j.cbpa.2009.03.018