Share to: share facebook share twitter share wa share telegram print page

Building envelope

A building envelope or building enclosure is the physical separator between the conditioned and unconditioned environment of a building, including the resistance to air, water, heat,[1] light, and noise[2] transfer.

Discussion

The building envelope or enclosure is all of the elements of the outer shell that maintain a dry, heated, or cooled indoor environment and facilitate its climate control. Building envelope design is a specialized area of architectural and engineering practice that draws from all areas of building science and indoor climate control.[2]

The many functions of the building envelope can be separated into three categories:[3]

  • Support (to resist and transfer structural and dynamic loads)
  • Control (the flow of matter and energy of all types)
  • Finish (to meet desired aesthetics on the inside and outside)

The control function is at the core of good performance, and in practice focuses, in order of importance, on rain control, air control, heat control, and vapor control.[3]

Water and water vapor control

Control of rain is most fundamental, and there are numerous strategies to this end, namely, perfect barriers, drained screens, and mass / storage systems.[4]

One of the main purposes of a roof is to resist water. Two broad categories of roofs are flat and pitched. Flat roofs actually slope up to 10° or 15° but are built to resist intrusion from standing water. Pitched roofs are designed to shed water but not resist standing water intrusion which can occur during wind-driven rain or ice damming. Typically residential, pitched roofs are covered with an underlayment material beneath the roof covering material as a second line of defense. Domestic roof construction may also be ventilated to help remove moisture from leakage and condensation.

Walls do not get as severe water exposure as roofs but still leak water. Types of wall systems with regard to water penetration are barrier, drainage and surface-sealed walls.[5] Barrier walls are designed to allow water to be absorbed but not penetrate the wall, and include concrete and some masonry walls. Drainage walls allow water that leaks into the wall to drain out such as cavity walls. Drainage walls may also be ventilated to aid drying such as rainscreen and pressure equalization wall systems. Sealed-surface walls do not allow any water penetration at the exterior surface of the siding material. Generally most materials will not remain sealed over the long term and this system is very limited, but ordinary residential construction often treats walls as sealed-surface systems relying on the siding and an underlayment layer sometimes called housewrap.

Moisture can enter basements through the walls or floor. Basement waterproofing and drainage keep the walls dry and a moisture barrier is needed under the floor.

Air control

Control of airflow is important to ensure indoor air quality, control energy consumption, avoid condensation (and thus help ensure durability), and to provide comfort. Control of air movement includes flow through the enclosure (the assembly of materials that perform this function is termed the air barrier system) or through components of the building envelope (interstitial) itself, as well as into and out of the interior space, (which can affect building insulation performance greatly). Hence, air control includes the control of windwashing[6] (cold air passing through insulation) and convective loops which are air movements within a wall or ceiling that may result in 10% to 20% of the heat loss alone.[7]

The physical components of the envelope include the foundation, roof, walls, doors, windows, ceiling, and their related barriers and insulation. The dimensions, performance and compatibility of materials, fabrication process and details, connections and interactions are the main factors that determine the effectiveness and durability of the building enclosure system.

Common measures of the effectiveness of a building envelope include physical protection from weather and climate (comfort), indoor air quality (hygiene and public health), durability and energy efficiency. In order to achieve these objectives, all building enclosure systems must include a solid structure, a drainage plane, an air barrier, a thermal barrier, and may include a vapor barrier. Moisture control (e.g. damp proofing) is essential in all climates, but cold climates and hot-humid climates are especially demanding.[8]

Air sealing can improve the energy efficiency of a building by minimizing the amount of energy needed to heat or cool the building. This is especially pertinent in cold-climate buildings where space heating consumes the largest amount of energy.[9] A blower door test can be used to test the quality of the air sealing of the building envelope. Smoke pencils can be used to detect gaps and caulking and weather-stripping can be used to improve air sealing.[10] HVAC systems can ensure that a building’s air intake is both adequate, safe, and energy efficient.

Thermal envelope

The thermal envelope, or heat flow control layer, is part of a building envelope but may be in a different location such as in a ceiling. The difference can be illustrated by the fact that an insulated attic floor is the primary thermal control layer between the inside of the house and the exterior while the entire roof (from the surface of the roofing material to the interior paint finish on the ceiling) is part of the building envelope.[11]

Building envelope thermography involves using an infrared camera to view temperature anomalies on the interior and exterior surfaces of the structure. Analysis of infrared images can be useful in identifying moisture issues from water intrusion, or interstitial condensation.[12] Other types of anomalies that can be detected are thermal bridging, continuity of insulation and air leakage, however this requires a temperature differential between the inside and outside ambient temperatures.[13]

See also

References

  1. ^ Cleveland, Cutler J., and Christopher G. Morris. Building envelopergy. Expanded Edition. Burlington: Elsevier, 2009. Print.
  2. ^ a b Syed, Asif. Advanced building technologies for sustainability. Hoboken, N.J.: John Wiley & Sons, Inc., 2012. 115. Print.
  3. ^ a b Straube, J.F., Burnett, E.F.P. Building Science for Building Enclosures. Building Science Press, Westford, 2005.
  4. ^ 11. Straube, J.F. and Burnett, E.F.P., "Rain Control and Design Strategies". Journal of Thermal Insulation and Building Envelopes, July 1999, pp. 41–56.
  5. ^ various authors. Guideline for condition assessment of the building envelope. Reston, Va.: American Society of Civil Engineers, 2000. 4. Print.
  6. ^ Hens, Hugo S. L. C. Performance Based Building Design 2: From Timber-framed Construction to Partition Walls. Berlin: Ernst, William & Son, 2012. 10. Print.
  7. ^ Harrje, D. T, G. S. Dutt and K. J. Gadsby, "Convective Loop Heat Losses in Buildings". Oak Ridge National Laboratory. 1985. Print. Archived November 2, 2013, at the Wayback Machine
  8. ^ Lstiburek, Joseph W., and John Carmody. Moisture Control Handbook: Principles and Practices for Residential and Small Commercial Buildings. New York: Van Nostrand Reinhold, 1993. 88. Print.
  9. ^ Asaee, S. Rasoul; Sharafian, Amir; Herrera, Omar E.; Blomerus, Paul; Mérida, Walter (May 2018). "Housing stock in cold-climate countries: Conversion challenges for net zero emission buildings". Applied Energy. 217: 88–100. Bibcode:2018ApEn..217...88A. doi:10.1016/j.apenergy.2018.02.135.
  10. ^ Canada, Natural Resources (2014-03-06). "Keeping The Heat In - Section 4: Comprehensive air leakage control in your home". www.nrcan.gc.ca. Retrieved 2022-03-26.
  11. ^ Vliet, Willem. The Encyclopedia of Housing. Thousand Oaks, Calif.: Sage, 1998. 139. Print.
  12. ^ Hunaidi, Osama. Leak Detection Methods for Plastic Water Distribution Pipes. Denver, Colo.: AWWA Research Foundation, 1999. 57. Print.
  13. ^ Faulkner, Ray. Infrared Building Surveys. Portsmouth, United Kingdom: iRed, 2017.

External links

Read other articles:

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (أبريل 2020) منتخب تونس تحت 23 سنة لكرة الطائرة للسيدات الكنية نسور قرطاج (The Carthage Eagles) بلد الرياضة  تونس الاتحاد الجامع

Den här artikeln har skapats av Lsjbot, ett program (en robot) för automatisk redigering. (2016-11)Artikeln kan innehålla fakta- eller språkfel, eller ett märkligt urval av fakta, källor eller bilder. Mallen kan avlägsnas efter en kontroll av innehållet (vidare information) Licenciado Trinidad García de la Cadena Ort Land  Mexiko Delstat Veracruz Kommun Las Choapas Höjdläge 58 m ö.h. Koordinater 17°26′36″N 94°01′27″V / 17.44333°N 94.02417°V&…

Kuil Horus di Edfu. Arsitektur Mesir Kuno telah berkembang pada masa kejayaannya, dan melahirkan karya-karya besar seperti Piramida Giza dan Spinks. Bangunan-bangunan yang ada pada masa Mesir Kuno dapat dibedakan ke dalam dua jenis. Yang pertama adalah bangunan untuk kediaman masyarakat Mesir Kuno. Yang kedua adalah bangunan untuk kepentingan religius. Bangunan yang berfungsi sebagai kediaman masyarakat terbagi menjadi bangunan untuk kaum elit pemerintahan dan bangunan untuk kaum pedagang dan pe…

1995 incident For the 2009 event thought to be a missile failure, see 2009 Norwegian spiral anomaly.Norwegian rocket incidentA Black Brant XII rocket similar to the one that was involved in the incident.Location of Andøya Rocket Range, the launch site of the missile.Date25 January 1995 (28 years ago)Duration0:24:00CauseLaunch of a Black Brant XII rocket from the Andøya Rocket Range in Norway.ParticipantsUnited StatesNorwayRussiaOutcomeRussian nuclear forces put on high alert for approximately …

Історико-художній музей (Серпухов) 54°54′13″ пн. ш. 37°25′29″ сх. д. / 54.90370000002777573° пн. ш. 37.42490000002777606° сх. д. / 54.90370000002777573; 37.42490000002777606Координати: 54°54′13″ пн. ш. 37°25′29″ сх. д. / 54.90370000002777573° пн. ш. 37.42490000002777606° сх. д. / 54.9…

Finnish architect Theodor HöijerHöijer in 1900BornCarl Theodor Höijer(1843-02-20)20 February 1843Helsinki, Grand Duchy of FinlandDied31 October 1910(1910-10-31) (aged 67)Helsinki, Grand Duchy of FinlandNationalityFinnishOccupationArchitect Carl Theodor Höijer (20 February 1843, Helsinki – 31 October 1910, Helsinki) was a Finnish architect. He designed a large number of buildings in central Helsinki. He was the first architect in Finland who managed to pursue a truly successful career …

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2019) آر. كينت هيوز معلومات شخصية الميلاد 1 مارس 1942 (81 سنة)  مواطنة المملكة المتحدة  الحياة العملية المواضيع أدب مسيحي،  والمسيحية  المدرسة الأم مدرسة الثال…

يشير مصطلح التاريخ النسائي إلى إعادة قراءة التاريخ من منظور نسائي. وهو يختلف عن تاريخ الحركة النسائية، الذي يتناول أصول الحركة النسائية وتطورها. ويختلف أيضًا عن تاريخ المرأة، الذي يركز على دور المرأة في الأحداث التاريخية. والهدف من التاريخ النسائي هو استكشاف وجهة النظر الن

Museum in Manhattan, New York New York City Police MuseumEstablished1999Websitewww.nycpm.org First Police Precinct Station HouseU.S. National Register of Historic PlacesNew York City Landmark No. 0968 Location100 Old Slip, New York, NY 10005Coordinates40°42′12″N 74°00′31″W / 40.70333°N 74.00861°W / 40.70333; -74.00861Arealess than one acreBuilt1909ArchitectHunt & HuntArchitectural styleLate 19th And 20th Century RevivalsNRHP reference&#…

Казарми Монкада Відомий під іменем Cuartel del Nuevo Presidio, cuartel Reina Mercedes, cuartel Moncada і Ciudad Escolar 26 de Julio Названо на честь Guillermo Moncadad Країна  Куба Адміністративна одиниця Сантьяго-де-Куба Місце розташування Сантьяго-де-Куба Час/дата початку 1859  Казарми Монкада у Вікісховищі

El Concilio de Agde en 506. En la historia del catolicismo en Francia, el concilio de Agda se celebró el 10 de septiembre de 506 d. C. en Agatha o Agda en Languedoc, fue presidido por Cesáreo de Arlés y contó con la asistencia de treinta y cinco obispos. Sus cuarenta y siete cánones auténticos se ocupan de la disciplina eclesiástica. Uno de ellos (el séptimo), prohibía a los eclesiásticos vender o enajenar los bienes de la iglesia, a la cual consagraron su vida; esto parece s…

السبيخة الإحداثيات 35°56′N 10°01′E / 35.93°N 10.02°E / 35.93; 10.02  تقسيم إداري  البلد تونس[1]  التقسيم الأعلى ولاية القيروان  معلومات أخرى 3110  رمز جيونيمز 2473163  تعديل مصدري - تعديل   السبِيخَة مدن تقع في ولاية القيروان من الوسط التونسي، على بعد 35 كم من مدينة …

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (فبراير 2020) فراني وزوي (بالإنجليزية: Franny and Zooey)‏    المؤلف جيروم ديفيد سالينجر  اللغة إنجليزية أمريكية  تاريخ النشر 1961  المواقع ردمك 0-316-76954-1  OCLC 68569936   …

The Grand WazooAlbum studio karya Frank ZappaDirilisDecember 1972DirekamParamount Studios, Hollywood April – May 1972GenreJazz fusionDurasi37:05LabelRykodiscProduserFrank ZappaKronologi Frank Zappa Waka/Jawaka(1972)Waka/Jawaka1972 The Grand Wazoo(1972) Over-Nite Sensation(1973)Over-Nite Sensation1973 The Grand Wazoo adalah album jazz fusion oleh Frank Zappa, diterbitkan pada 1972. Daftar lagu The Grand Wazoo – 13:20 For Calvin (And His Next Two Hitch-Hikers) – 6:06 Cletus Awreetus-Awri…

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2021) فتاة قوطعت أثناء عزفها معلومات فنية الفنان يوهانس فيرمير[1] تاريخ إنشاء العمل 1660–1661 الموقع معرض فريك[2]  نوع العمل لوحة زيتية[3] الموضوع وسيط propert…

2022 American television series The Santa ClausesSeason 1 promotional posterGenre Christmas Comedy-fantasy Created byJack BurdittBased onThe Santa Clauseby Leo BenvenutiSteve RudnickStarring Tim Allen Elizabeth Mitchell Austin Kane Elizabeth Allen-Dick Matilda Lawler Devin Bright Rupali Redd Kal Penn Gabriel Fluffy Iglesias Eric Stonestreet Music by Ariel Rechtshaid Will Canzoneri Country of originUnited StatesOriginal languageEnglishNo. of seasons2No. of episodes12ProductionExecutive producers …

Троянська війнаПадіння Трої, Йоган Георг Траутман (1713–1769)ДатаXIII—XII століття до н. е.МісцеТроя (сучасна Туреччина)Результат Ліквідація ТроїСторони Ітака, Спарта, Мікени, мірмідони Троя і союзники (дардани, фригійці, лікійці, амазонки та інші)Командувачі Одіссей Менелай Ага…

Torre de pruebas Thyssenkrupp LocalizaciónPaís AlemaniaUbicación RottweilCoordenadas 48°10′45″N 8°37′29″E / 48.179166666667, 8.6248333333333Información generalEstilo arquitectura modernaConstrucción 2017Inauguración 7 de octubre de 2017Propietario thyssenkrupp Elevator AGDiseño y construcciónArquitecto Helmut Jahn y Werner Sobekhttp://testturm.thyssenkrupp-elevator.com y http://testturm.thyssenkrupp-elevator.com/en/[editar datos en Wikidata] La torre d…

Ana của Tây Ban NhaInfanta của Bồ Đào Nha và Tây Ban NhaVương hậu nước PhápVương thái hậu nước Pháp Vương hậu nước Pháp và NavarraTại vị24 tháng 11 năm 1615 – 14 tháng 5 năm 1643 (27 năm, 171 ngày)Tiền nhiệmMaria của MediciKế nhiệmMaría Teresa của Tây Ban NhaThông tin chungSinh(1601-09-22)22 tháng 9 năm 1601Cung điện Benavente, Valladolid, Tây Ban NhaMất20 tháng 1 năm 1666(1666-01-20) (64 tuổ…

Type of large pillow from Japan A dakimakura without any printing on it A dakimakura (抱き枕; from daki 抱き embrace and makura 枕 pillow) is a type of large pillow from Japan which are usually coupled with pillow covers depicting anime characters.[1] The word is often translated to English as body pillow, waifu pillow, or husbando pillow. In Japan, dakimakura are similar to Western orthopedic body pillows, and are commonly used by Japanese youth as comfort objects.[1] Hist…

Kembali kehalaman sebelumnya

Lokasi Pengunjung: 18.188.227.33