Bott–Samelson resolution
In algebraic geometry , the Bott–Samelson resolution of a Schubert variety is a resolution of singularities . It was introduced by Bott & Samelson (1958) in the context of compact Lie groups . The algebraic formulation is independently due to Hansen (1973) and Demazure (1974) .
Definition
Let G be a connected reductive complex algebraic group , B a Borel subgroup and T a maximal torus contained in B .
Let
w
∈ ∈ -->
W
=
N
G
(
T
)
/
T
.
{\displaystyle w\in W=N_{G}(T)/T.}
Any such w can be written as a product of reflections by simple roots. Fix minimal such an expression:
w
_ _ -->
=
(
s
i
1
,
s
i
2
,
… … -->
,
s
i
ℓ ℓ -->
)
{\displaystyle {\underline {w}}=(s_{i_{1}},s_{i_{2}},\ldots ,s_{i_{\ell }})}
so that
w
=
s
i
1
s
i
2
⋯ ⋯ -->
s
i
ℓ ℓ -->
{\displaystyle w=s_{i_{1}}s_{i_{2}}\cdots s_{i_{\ell }}}
. (ℓ is the length of w .) Let
P
i
j
⊂ ⊂ -->
G
{\displaystyle P_{i_{j}}\subset G}
be the subgroup generated by B and a representative of
s
i
j
{\displaystyle s_{i_{j}}}
. Let
Z
w
_ _ -->
{\displaystyle Z_{\underline {w}}}
be the quotient:
Z
w
_ _ -->
=
P
i
1
× × -->
⋯ ⋯ -->
× × -->
P
i
ℓ ℓ -->
/
B
ℓ ℓ -->
{\displaystyle Z_{\underline {w}}=P_{i_{1}}\times \cdots \times P_{i_{\ell }}/B^{\ell }}
with respect to the action of
B
ℓ ℓ -->
{\displaystyle B^{\ell }}
by
(
b
1
,
… … -->
,
b
ℓ ℓ -->
)
⋅ ⋅ -->
(
p
1
,
… … -->
,
p
ℓ ℓ -->
)
=
(
p
1
b
1
− − -->
1
,
b
1
p
2
b
2
− − -->
1
,
… … -->
,
b
ℓ ℓ -->
− − -->
1
p
ℓ ℓ -->
b
ℓ ℓ -->
− − -->
1
)
.
{\displaystyle (b_{1},\ldots ,b_{\ell })\cdot (p_{1},\ldots ,p_{\ell })=(p_{1}b_{1}^{-1},b_{1}p_{2}b_{2}^{-1},\ldots ,b_{\ell -1}p_{\ell }b_{\ell }^{-1}).}
It is a smooth projective variety . Writing
X
w
=
B
w
B
¯ ¯ -->
/
B
=
(
P
i
1
⋯ ⋯ -->
P
i
ℓ ℓ -->
)
/
B
{\displaystyle X_{w}={\overline {BwB}}/B=(P_{i_{1}}\cdots P_{i_{\ell }})/B}
for the Schubert variety for w , the multiplication map
π π -->
:
Z
w
_ _ -->
→ → -->
X
w
{\displaystyle \pi :Z_{\underline {w}}\to X_{w}}
is a resolution of singularities called the Bott–Samelson resolution.
π π -->
{\displaystyle \pi }
has the property:
π π -->
∗ ∗ -->
O
Z
w
_ _ -->
=
O
X
w
{\displaystyle \pi _{*}{\mathcal {O}}_{Z_{\underline {w}}}={\mathcal {O}}_{X_{w}}}
and
R
i
π π -->
∗ ∗ -->
O
Z
w
_ _ -->
=
0
,
i
≥ ≥ -->
1.
{\displaystyle R^{i}\pi _{*}{\mathcal {O}}_{Z_{\underline {w}}}=0,\,i\geq 1.}
In other words,
X
w
{\displaystyle X_{w}}
has rational singularities .[ 2]
There are also some other constructions; see, for example, Vakil (2006) .
Notes
References
Bott, Raoul ; Samelson, Hans (1958), "Applications of the theory of Morse to symmetric spaces", American Journal of Mathematics , 80 : 964–1029, doi :10.2307/2372843 , MR 0105694 .
Brion, Michel (2005), "Lectures on the geometry of flag varieties", Topics in cohomological studies of algebraic varieties , Trends Math., Birkhäuser, Basel, pp. 33–85, arXiv :math/0410240 , doi :10.1007/3-7643-7342-3_2 , MR 2143072 .
Demazure, Michel (1974), "Désingularisation des variétés de Schubert généralisées" , Annales Scientifiques de l'École Normale Supérieure (in French), 7 : 53–88, MR 0354697 .
Gorodski, Claudio; Thorbergsson, Gudlaugur (2002), "Cycles of Bott-Samelson type for taut representations", Annals of Global Analysis and Geometry , 21 (3): 287–302, arXiv :math/0101209 , doi :10.1023/A:1014911422026 , MR 1896478 .
Hansen, H. C. (1973), "On cycles in flag manifolds", Mathematica Scandinavica , 33 : 269–274 (1974), doi :10.7146/math.scand.a-11489 , MR 0376703 .
Vakil, Ravi (2006), "A geometric Littlewood-Richardson rule", Annals of Mathematics , Second Series, 164 (2): 371–421, arXiv :math.AG/0302294 , doi :10.4007/annals.2006.164.371 , MR 2247964 .