This article is about Armand Borel's conjecture in geometric topology. For Émile Borel's conjecture in analysis/measure theory, see Strong measure zero set.
be a homotopy equivalence. The Borel conjecture states that the map is homotopic to a homeomorphism. Since aspherical manifolds with isomorphic fundamental groups are homotopy equivalent, the Borel conjecture implies that aspherical closed manifolds are determined, up to homeomorphism, by their fundamental groups.
In a May 1953 letter to Jean-Pierre Serre,[1]Armand Borel raised the question whether two aspherical manifolds with isomorphic fundamental groups are homeomorphic. A positive answer to the question "Is every homotopy equivalence between closed aspherical manifolds homotopic to a homeomorphism?" is referred to as the "so-called Borel Conjecture" in a 1986 paper of Jonathan Rosenberg.[2]
Motivation for the conjecture
A basic question is the following: if two closed manifolds are homotopy equivalent, are they homeomorphic? This is not true in general: there are homotopy equivalent lens spaces which are not homeomorphic.
Nevertheless, there are classes of manifolds for which homotopy equivalences between them can be homotoped to homeomorphisms. For instance, the Mostow rigidity theorem states that a homotopy equivalence between closed hyperbolic manifolds is homotopic to an isometry—in particular, to a homeomorphism. The Borel conjecture is a topological reformulation of Mostow rigidity, weakening the hypothesis from hyperbolic manifolds to aspherical manifolds, and similarly weakening the conclusion from an isometry to a homeomorphism.
Relationship to other conjectures
The Borel conjecture implies the Novikov conjecture for the special case in which the reference map is a homotopy equivalence.
The Poincaré conjecture asserts that a closed manifold homotopy equivalent to , the 3-sphere, is homeomorphic to . This is not a special case of the Borel conjecture, because is not aspherical. Nevertheless, the Borel conjecture for the 3-torus implies the Poincaré conjecture for .[3]