BPST instanton

The dx1⊗σ3 coefficient of BPST instanton on the (x1,x2)-slice of R4 where σ3 is the third Pauli matrix (top left). The dx2⊗σ3 coefficient (top right). These coefficients A13 and A23 determine the restriction of the BPST instanton A with g=2,ρ=1,z=0 to this slice. The corresponding field strength centered around z=0 (bottom left). A visual representation of the field strength of a BPST instanton with center z on the compactification S4 of R4 (bottom right).

In theoretical physics, the BPST instanton is the instanton with winding number 1 found by Alexander Belavin, Alexander Polyakov, Albert Schwarz and Yu. S. Tyupkin.[1] It is a classical solution to the equations of motion of SU(2) Yang–Mills theory in Euclidean space-time (i.e. after Wick rotation), meaning it describes a transition between two different topological vacua of the theory. It was originally hoped to open the path to solving the problem of confinement, especially since Polyakov had proven in 1975 that instantons are the cause of confinement in three-dimensional compact-QED.[2] This hope was not realized, however.

Description

The instanton

The BPST instanton has a nontrivial winding number, which can be visualised as a non-trivial mapping of the circle on itself.

The BPST instanton is an essentially non-perturbative classical solution of the Yang–Mills field equations. It is found when minimizing the Yang–Mills SU(2) Lagrangian density:

with Fμνa = ∂μAνa – ∂νAμa + gεabcAμbAνc the field strength. The instanton is a solution with finite action, so that Fμν must go to zero at space-time infinity, meaning that Aμ goes to a pure gauge configuration. Space-time infinity of our four-dimensional world is S3. The gauge group SU(2) has exactly the same structure, so the solutions with Aμ pure gauge at infinity are mappings from S3 onto itself.[1] These mappings can be labelled by an integer number q, the Pontryagin index (or winding number). Instantons have q = 1 and thus correspond (at infinity) to gauge transformations which cannot be continuously deformed to unity.[3] The BPST solution is thus topologically stable.

It can be shown that self-dual configurations obeying the relation Fμνa = ± 1/2 εμναβ Fαβa minimize the action.[4] Solutions with a plus sign are called instantons, those with the minus sign are anti-instantons.

Instantons and anti-instantons can be shown to minimise the action locally as follows:

, where .

The first term is minimised by self-dual or anti-self-dual configurations, whereas the last term is a total derivative and therefore depends only on the boundary (i.e. ) of the solution; it is therefore a topological invariant and can be shown to be an integer number times some constant (the constant here is ). The integer is called instanton number (see Homotopy group).

Explicitly the instanton solution is given by[5]

with zμ the center and ρ the scale of the instanton. ηaμν is the 't Hooft symbol:

For large x2, ρ becomes negligible and the gauge field approaches that of the pure gauge transformation: . Indeed, the field strength is:

and approaches zero as fast as r−4 at infinity.

An anti-instanton is described by a similar expression, but with the 't Hooft symbol replaced by the anti-'t Hooft symbol , which is equal to the ordinary 't Hooft symbol, except that the components with one of the Lorentz indices equal to four have opposite sign.

The BPST solution has many symmetries.[6] Translations and dilations transform a solution into other solutions. Coordinate inversion (xμxμ/x2) transforms an instanton of size ρ into an anti-instanton with size 1/ρ and vice versa. Rotations in Euclidean four-space and special conformal transformations leave the solution invariant (up to a gauge transformation).

The classical action of an instanton equals[4]

Since this quantity comes in an exponential in the path integral formalism this is an essentially non-perturbative effect, as the function e−1/x^2 has vanishing Taylor series at the origin, despite being nonzero elsewhere.

Other gauges

The expression for the BPST instanton given above is in the so-called regular Landau gauge. Another form exists, which is gauge-equivalent with the expression given above, in the singular Landau gauge. In both these gauges, the expression satisfies ∂μAμ = 0. In singular gauge the instanton is

In singular gauge, the expression has a singularity in the center of the instanton, but goes to zero more swiftly for x to infinity.

When working in other gauges than the Landau gauge, similar expressions can be found in the literature.

Generalization and embedding in other theories

At finite temperature the BPST instanton generalizes to what is called a caloron.

The above is valid for a Yang–Mills theory with SU(2) as gauge group. It can readily be generalized to an arbitrary non-Abelian group. The instantons are then given by the BPST instanton for some directions in the group space, and by zero in the other directions.

When turning to a Yang–Mills theory with spontaneous symmetry breaking due to the Higgs mechanism, one finds that BPST instantons are not exact solutions to the field equations anymore. In order to find approximate solutions, the formalism of constrained instantons can be used.[7]

Instanton gas and liquid

In QCD

It is expected that BPST-like instantons play an important role in the vacuum structure of QCD. Instantons are indeed found in lattice calculations. The first computations performed with instantons used the dilute gas approximation. The results obtained did not solve the infrared problem of QCD, making many physicists turn away from instanton physics. Later, though, an instanton liquid model was proposed, turning out to be a more promising approach.[8]

The dilute instanton gas model departs from the supposition that the QCD vacuum consists of a gas of BPST instantons. Although only the solutions with one or few instantons (or anti-instantons) are known exactly, a dilute gas of instantons and anti-instantons can be approximated by considering a superposition of one-instanton solutions at great distances from one another. 't Hooft calculated the effective action for such an ensemble,[5] and he found an infrared divergence for big instantons, meaning that an infinite amount of infinitely big instantons would populate the vacuum.

Later, an instanton liquid model was studied. This model starts from the assumption that an ensemble of instantons cannot be described by a mere sum of separate instantons. Various models have been proposed, introducing interactions between instantons or using variational methods (like the "valley approximation") endeavouring to approximate the exact multi-instanton solution as closely as possible. Many phenomenological successes have been reached.[8] Confinement seems to be the biggest issue in Yang–Mills theory for which instantons have no answer whatsoever.

In electroweak theory

The weak interaction is described by SU(2), so that instantons can be expected to play a role there as well. If so, they would induce baryon number violation. Due to the Higgs mechanism, instantons are not exact solutions anymore, but approximations can be used instead. One of the conclusions is that the presence of a gauge boson mass suppresses large instantons, so that the instanton gas approximation is consistent.

Due to the non-perturbative nature of instantons, all their effects are suppressed by a factor of e−16π2/g2, which, in electroweak theory, is of the order 10−179.

Other solutions to the field equations

The instanton and anti-instantons are not the only solutions of the Wick-rotated Yang–Mills field equations. Multi-instanton solutions have been found for q equal to two and three, and partial solutions exist for higher q as well. General multi-instanton solutions can only be approximated using the valley approximation — one starts from a certain ansatz (usually the sum of the required number of instantons) and one minimizes numerically the action under a given constraint (keeping the number of instantons and the sizes of the instantons constant).

Solutions which are not self-dual also exist.[9] These are not local minima of the action, but instead they correspond to saddle points.

Instantons are also closely related to merons,[10] singular non-dual solutions of the Euclidean Yang–Mills field equations of topological charge 1/2. Instantons are thought to be composed of two merons.

See also

References

  1. ^ a b A.A. Belavin; A.M. Polyakov; A.S. Schwartz; Yu.S.Tyupkin (1975). "Pseudoparticle solutions of the Yang-Mills equations". Phys. Lett. B. 59 (1): 85–87. Bibcode:1975PhLB...59...85B. doi:10.1016/0370-2693(75)90163-X.
  2. ^ Polyakov, Alexander (1975). "Compact gauge fields and the infrared catastrophe". Phys. Lett. B. 59 (1): 82–84. Bibcode:1975PhLB...59...82P. doi:10.1016/0370-2693(75)90162-8.
  3. ^ S. Coleman, The uses of instantons, Int. School of Subnuclear Physics, (Erice, 1977)
  4. ^ a b Instantons in gauge theories, M.Shifman, World Scientific, ISBN 981-02-1681-5
  5. ^ a b 't Hooft, Gerard (1976). "Computation of the quantum effects due to a four-dimensional pseudoparticle". Phys. Rev. D. 14 (12): 3432–3450. Bibcode:1976PhRvD..14.3432T. doi:10.1103/PhysRevD.14.3432.
  6. ^ R. Jackiw and C.Rebbi, Conformal properties of a Yang–Mills pseudoparticle, Phys. Rev. D14 (1976) 517
  7. ^ Affleck, Ian (1981). "On constrained instantons". Nucl. Phys. B. 191 (2): 429–444. Bibcode:1981NuPhB.191..429A. doi:10.1016/0550-3213(81)90307-2.
  8. ^ a b Hutter, Marcus (1995). "Instantons in QCD: Theory and application of the instanton liquid model". arXiv:hep-ph/0107098.
  9. ^ Stefan Vandoren; Peter van Nieuwenhuizen (2008). "Lectures on instantons". arXiv:0802.1862 [hep-th].
  10. ^ Actor, Alfred (1979). "Classical solutions of SU(2) Yang-Mills theories". Rev. Mod. Phys. 51 (3): 461–525. Bibcode:1979RvMP...51..461A. doi:10.1103/RevModPhys.51.461.

Read other articles:

Etelis Etelis carbunculus Klasifikasi ilmiah Kerajaan: Animalia Filum: Chordata Kelas: Actinopterygii Ordo: Perciformes Famili: Lutjanidae Subfamili: Etelinae Genus: EtelisG. Cuvier, 1828[1] Spesies tipe Etelis carbunculusG. Cuvier, 1828[1] Spesies[3] Etelis boweni Andrews, Fernandez-Silva, Randall & H.-C. Ho, 2021[2] Etelis carbunculus G. Cuvier, 1828 Etelis coruscans Valenciennes, 1862 Etelis oculatus (Valenciennes, 1828) Etelis radiosus W. D. Anderson, ...

 

Aivars EndziņšEndziņš (2011)Lahir(1940-12-08)8 Desember 1940Rīga, SSR Latvia, USSR(sekarang Latvia)Meninggal21 November 2023(2023-11-21) (umur 82)AlmamaterUniversitas LatviaPekerjaanPengacara, politikus. Aivars Endziņš (8 Desember 1940 – 21 November 2023) adalah seorang pengacara dan politikus Latvia.[1] Ia lulus dari Universitas Latvia pada tahun 1968 dan pada tahun 1977 memperoleh kandidat gelar ilmu hukum. Pada tahun 1997 menjadi Doktor Ilmu Fikih. Ia p...

 

Serie C 1957-1958 Competizione Serie C Sport Calcio Edizione 20ª Organizzatore Lega Nazionale Date dal 15 settembre 1957al 25 maggio 1958 Luogo  Italia Partecipanti 18 Risultati Vincitore Reggiana(1º titolo) Altre promozioni Vigevano Retrocessioni non previste Statistiche Miglior marcatore Giuseppe Orlando (20) Incontri disputati 306 Gol segnati 725 (2,37 per incontro) Cronologia della competizione 1956-1957 1958-1959 Manuale La Serie C 1957-1958 fu la ventesima ediz...

Demonstrasi air mancur amonia Air mancur amonia adalah sebuah jenis demonstrasi kimia. Eksperimen tersebut dilakukan dengan memasukkan air ke dalam kontainer berisi gas amonia.[1] Amonia larut dalam air dan terjadi tekanan dalam kontainer tersebut. Akibatnya, air menjadi terangkat dan menciptakan efek air mancur. Demonstrasi tersebut memperkenalkan konsep seperti kelarutan dan hukum gas pada tingkat awal. Referensi ^ The Ammonia Smoke Fountain: An Interesting Thermodynamic Adventure M...

 

Group of Eastern Indian states For the British company, see East India Company. For other uses, see East India (disambiguation). Not to be confused with East Indies. Place in IndiaEast India Eastern India / The EastCoordinates: 23°15′N 86°00′E / 23.25°N 86.00°E / 23.25; 86.00CountryIndiaStates and territories Andaman and Nicobar Islands Bihar Jharkhand Odisha West Bengal Largest cityKolkataMost populous cities (2011)Bihar: Patna Gaya Bhagalpur Muzaffarpur Purni...

 

Italian economist and academic, religious sister, and Holy See official Alessandra SmerilliF.M.A.TitlePhDPersonalBorn (1974-11-14) 14 November 1974 (age 49)Vasto, ItalyReligionCatholicNationalityItalianAlma materRoma Tre University, University of East Anglia, Pontifical Faculty of Educational Sciences AuxiliumProfessionEconomist, Secretary of the Dicastery for Promoting Integral Human DevelopmentOrderSalesian Sisters of Don Bosco F.M.A.Senior postingAwardsOrder of the Star of ItalyP...

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) The topic of this article may not meet Wikipedia's notability guideline for sports and athletics. Please help to demonstrate the notability of the topic by citing reliable secondary sources that are independent of the topic and provide significant coverage of it beyond a mere trivial mention. If notability cannot be shown, the article is lik...

 

Gearing-class destroyer This article's tone or style may not reflect the encyclopedic tone used on Wikipedia. The reason given is: Unencyclopedic tone throughout uncited portions of text See Wikipedia's guide to writing better articles for suggestions. (February 2013) (Learn how and when to remove this template message) USS Hanson underway on 17 August 1966 History United States NameHanson NamesakeRobert M. Hanson BuilderBath Iron Works Laid down7 October 1944 Launched11 March 1945 Sponsored ...

 

2016 studio album by LeadThe ShowcaseStudio album by LeadReleasedJune 8, 2016Recorded2012-2016GenreHip-hop, pop, R&B, danceLabelPony CanyonCD (PCCA-4403)CD [Limited] (PCCA-4400)CD+DVD (PCCA-4401)CD+Booklet (PCCA-4402)Lead chronology Now or Never(2012) The Showcase(2016) Milestone(2018) Singles from The Showcase StillReleased: December 12, 2012 UpturnReleased: June 19, 2013 Green DaysReleased: September 18, 2013 SakuraReleased: February 26, 2014 Omoide BreakerReleased: September 17...

Nawagunjara Nawagunjara atau Nabagunjara[1] (Dewanagari: नवगुंजर; ,IAST: Navaguṅjara, नवगुंजर) adalah makhluk dalam mitologi Hindu yang terbentuk dari sembilan bagian tubuh makhluk yang berbeda-beda. Makhluk ini menjadi ragam hias yang lazim dalam lukisan bergaya Pata-Chitra, di negara bagian Odisha, India. Menurut keyakinan Hindu, makhluk tersebut dianggap sebagai wujud astral dari Dewa Wisnu, atau Kresna yang diyakini sebagai awatara Wisnu. Ma...

 

西維珍尼亞 美國联邦州State of West Virginia 州旗州徽綽號:豪华之州地图中高亮部分为西維珍尼亞坐标:37°10'N-40°40'N, 77°40'W-82°40'W国家 美國加入聯邦1863年6月20日(第35个加入联邦)首府(最大城市)查爾斯頓政府 • 州长(英语:List of Governors of {{{Name}}}]]) • 副州长(英语:List of lieutenant governors of {{{Name}}}]])吉姆·賈斯蒂斯(R)米奇·卡邁克爾(...

 

Long, loose overgarment fastening at the neck For other uses, see Cloak (disambiguation). A young man in an evening cloak, 1823. Cloak, 1580–1600 Victoria and Albert Museum, No. 793-1901 Look up cloak in Wiktionary, the free dictionary. A cloak is a type of loose garment worn over clothing, mostly but not always as outerwear for outdoor wear, serving the same purpose as an overcoat, protecting the wearer from the weather. It may form part of a uniform.[1] People in many different so...

British reality TV show (2013–14) TNA British Boot CampGenreReality televisionStarringSee belowCountry of originUnited KingdomOriginal languageEnglishNo. of seasons2[1]No. of episodes14[1] (as of 7 December 2014)ProductionExecutive producerJeremy Borash[2]Production locationsOrlando, Florida, United States[1]London, United KingdomManchester, United Kingdom[3]Nashville, Tennessee, United States[4]Louisville, Kentucky, United StatesRunning time3...

 

Anglo-Irish landowner and politician The Right HonourableThe Lord EmlyPCPresident of the Board of HealthIn office9 February 1857 – 24 September 1857MonarchVictoriaPrime MinisterThe Viscount PalmerstonPreceded byHon. William CowperSucceeded byHon. William CowperPaymaster General and Vice-President of the Board of TradeIn office12 March 1866 – 26 June 1866MonarchVictoriaPrime MinisterThe Earl RussellPreceded byGeorge GoschenSucceeded byStephen CaveUnder-Secretary of State ...

 

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Duet – berita · surat kabar · buku · cendekiawan · JSTOR Untuk kegunaan lain, lihat Duet (disambiguasi). Het duo, oleh Hendrick Janszoon ter Brugghen Duet merupakan komposisi atau bagian musik yang untuk...

Каличенко Андрей Владимирович Дата рождения 27 января 1975(1975-01-27) (49 лет) Место рождения Новосибирск Гражданство  СССР→ Россия Род деятельности Депутат Государственной Думы VII созыва Образование Сибирская государственная академия путей сообщения Партия Единая...

 

Group of protists CRuMs Collodictyon pseudopodoa Scientific classification Domain: Eukaryota Clade: Opimoda Clade: Podiata Clade: CRuMsBrown et al. 2018[1] Orders Collodictyonida Rigifilida Mantamonadida Synonyms Crumalia Zmitrovich, Perelygin & Zharikov 2022[2] Varisulca Cavalier-Smith 2013 emend. 2021[3] CRuMs or Crumalia[2] is a proposed clade of microbial eukaryotes, whose name is an acronym of the following constituent groups: i) collodictyonids also k...

 

هذه المقالة مَكتوبةٌ بطريقةٍ تخالف أسلوب ويكيبيديا، ويبدو أنها تعرض فرضياتٍ علميةٍ مبنيةٍ على مصادرَ أولية فقط. فضلاً، ساهم في تطوير هذه المقالة من خلال إعادة صياغتها وفق أسلوب الكتابة في الموسوعة واستبدال المصادر الثانوية بالمصادر الأولية. ما هي الحضارة الآسيوية؟. (يناي...

Canadian businessman and diplomat The HonourableMaurice Frederick StrongPC, CC, OM, FRSC, FRAICStrong, c. 1971Personal detailsBorn(1929-04-29)April 29, 1929Oak Lake, Manitoba, CanadaDiedNovember 27, 2015(2015-11-27) (aged 86)Ottawa, Ontario, CanadaSpouse(s)Pauline Olivette (m. 1950, div. 1980)Hanne Marstrand (m. 1981, sep. 1989)[1][2]Parent(s)Frederick Milton StrongMary FyfeResidence(s)Crestone, Colorado, U.S. (1972-1989)Lost Lake, On...

 

此條目需要补充更多来源。 (2015年10月24日)请协助補充多方面可靠来源以改善这篇条目,无法查证的内容可能會因為异议提出而被移除。致使用者:请搜索一下条目的标题(来源搜索:省長 (加拿大) — 网页、新闻、书籍、学术、图像),以检查网络上是否存在该主题的更多可靠来源(判定指引)。 加拿大 加拿大政府与政治系列条目 王室 君主(歷任名單):查爾斯三世 ...