BAITSSS originated from the research of Ramesh Dhungel, a graduate student at the University of Idaho,[2] who joined a project called "Producing and integrating time series of gridded evapotranspiration for irrigation management, hydrology and remote sensing applications" under professor Richard G. Allen.[3]
In 2012, the initial version of landscape model was developed using the PythonIDLE environment using NARR weather data (~ 32 kilometers).[1] Dhungel submitted his PhD dissertation in 2014 where the model was called BATANS (backward averaged two source accelerated numerical solution).[1][2] The model was first published in Meteorological Applications journal in 2016 under the name BAITSSS
as a framework to interpolate ET between the satellite overpass when thermal based surface temperature is unavailable.[1] The overall concept of backward averaging was introduced to expedite the convergence process of iteratively solved surface energy balance components which can be time-consuming and can frequently suffer non-convergence, especially in low wind speed.[1]
In 2017, the landscape BAITSSS model was scripted in Python shell, together with GDAL and NumPy libraries using NLDAS weather data (~ 12.5 kilometers).[1] The detailed independent model was evaluated against weighing lysimeter measured ET, infrared temperature (IRT) and net radiometer of drought-tolerantcorn and sorghum at Conservation and Production Research Laboratory in Bushland, Texas by group of scientists from USDA-ARS and Kansas State University between 2017 and 2020.[1] Some later development of BAITSSS includes physically based crop productivity components, i.e. biomass and crop yield computation.[1][4][5]
Surface energy balance is one of the commonly utilized approaches to quantify ET (latent heatflux in terms of flux), where weather variables and vegetation Indices are the drivers of this process. BAITSSS adopts numerous equations to compute surface energy balance and resistances where primarily are from Javis, 1976,[9] Choudhury and Monteith, 1988,[10] and aerodynamic methods or flux-gradient relationship equations[11][12] with stability functions associated with Monin–Obukhov similarity theory.
Underlying fundamental equations of surface energy balance
The aerodynamic or flux-gradient equations of latent heat flux in BAITSSS are shown below. is saturation vapor pressure at the canopy and is for soil, is ambient vapor pressure, rac is bulk boundary layer resistance of vegetative elements in the canopy, rah is aerodynamic resistance between zero plane displacement (d) + roughness length of momentum (zom) and measurement height (z) of wind speed, ras is the aerodynamic resistance between the substrate and canopy height (d +zom), and rss is soil surface resistance.[1]
Equations of soil water balance and irrigation decision
Standard soil water balance equations for soil surface and the root zone are implemented in BAITSSS for each time step, where irrigation decisions are based on the soil moisture at the root zone.[1]
BAITSSS is a two-source energy balance model (separate soil and canopy section) which is integrated by fraction of vegetation cover (fc) based on vegetation indices.
Two-layers soil water balance
BAITSSS simulates soil surface moisture (θsur) and root zone moisture (θroot) layers are related to the dynamics of evaporative (Ess) and transpirative (T) flux. Capillary rise (CR) from the layer below root zone into the root zone layer is neglected. The soil moisture at both layers is restricted to field capacity (θfc).
BAITSSS estimates ground heat flux (G) of soil surface based on sensible heat flux (Hs) or net radiation (Rn_s) of soil surface and neglects G on vegetated surface.
BAITSSS simulates irrigation (Irr) in agriculturallandscapes[13][14] by mimicking a tipping-bucket approach (applied to surface as sprinkler or sub-surface layer as drip), using Management Allowed Depletion (MAD), and soil water content regimes at rooting depth (lower 100-2000 millimeters of soil layer).
BAITSSS was implemented to compute ET in southern Idaho for 2008, and in northern California for 2010.[1] It was used to calculate corn and sorghum ET in Bushland, Texas for 2016, and multiple crops in northwest Kansas for 2013–2017.[1][15][16][4] BAITSSS has been widely discussed among the peers around the world, including Bhattarai et al. in 2017 and Jones et al. in 2019.[17]United States Senate Committee on Agriculture, Nutrition and Forestry listed BAITSSS in its climate change report.[18] BAITSSS was also covered by articles in Open Access Government,[6][19]Landsat science team,[20] Grass & Grain magazine,[21] National Information Management & Support System (NIMSS), [22] terrestrial ecological models, [23] key research contribution related to sensible heat flux estimation and irrigation decision in remote sensing based ET models.[24][25]
Furthermore, Upper Republican Regional Advisory Committee of Kansas (June 2019)[16] and GMD 4[34] discussed possible benefit and utilization of BAITSSS for managing water use, educational purpose, and cost-share. A short story about Ogallala Aquifer Conservation effort from Kansas State University and GMD4 using ET model was published in Mother Earth News (April/May 2020),[35] and Progressive Crop Consultant.[36]
Example application
Groundwater and Irrigation
Dhungel et al., 2020,[1] combined with field crop scientists, systems analysts, and district water managers, applied BAITSSS at the district water management level focusing on seasonal ET and annual groundwater withdrawal rates at Sheridan 6 (SD-6) Local Enhanced Management Plan (LEMA) for five years period (2013-2017) in northwest, Kansas, United States. BAITSSS simulated irrigation was compared to reported irrigation as well as to infer deficit irrigation within water right management units (WRMU). In Kansas, groundwater pumping records are legal documents and maintained by the Kansas Division of Water Resources. The in-season water supply was compared to BAITSSS simulated ET as well-watered cropwater condition.
Evapotranspiration Hysterisis and Advection
A study related to ET uncertainty associated with ET hysteresis (Vapor pressure and net radiation) were conducted using lysimeter, Eddy covariance (EC), and BAITSSS model (point-scale) in an advective environment of Bushland, Texas.[1] Results indicated that the pattern of hysteresis from BAITSSS closely followed the lysimeter and showed weak hysteresis related to net radiation when compared to EC. However, both lysimeter and BAITSSS showed strong hysteresis related to VPD when compared to EC.[citation needed]
Lettuce Evapotranspiration
A study related to lettuce evapotranspiration was conducted at Yuma, Arizona using BAITSSS between 2016 and 2020, where model simulated ET closely followed twelve eddy covariance sites [14]
Challenges and limitations
Simulation of hourly ET at 30 m spatial resolution for seasonal time scale is computationally challenging and data-intensive.[1][37] The low wind speed complicates the convergence of surface energy balance components as well.[1] The peer group Pan et al. in 2017 [14] and Dhungel et al., 2019 [1] pointed out the possible difficulty of parameterization and validations of these kinds of resistance based models. The simulated irrigation may vary than that actually applied in field.[1]
See also
METRIC, another model developed by University of Idaho that uses Landsat satellite data to compute and map evapotranspiration
SEBAL, uses the surface energy balance to estimate aspects of the hydrological cycle. SEBAL maps evapotranspiration, biomass growth, water deficit and soil moisture
^Jarvis, P.G. (1976). The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. OCLC709369248.
^CHOUDHURY, BJ; MONTEITH, JL (15 January 1988). "A four-layer model for the heat budget of homogeneous land surfaces". Quarterly Journal of the Royal Meteorological Society. 114 (480): 373–398. doi:10.1256/smsqj.48005. ISSN1477-870X.