Azumaya algebra

In mathematics, an Azumaya algebra is a generalization of central simple algebras to -algebras where need not be a field. Such a notion was introduced in a 1951 paper of Goro Azumaya, for the case where is a commutative local ring. The notion was developed further in ring theory, and in algebraic geometry, where Alexander Grothendieck made it the basis for his geometric theory of the Brauer group in Bourbaki seminars from 1964–65. There are now several points of access to the basic definitions.

Over a ring

An Azumaya algebra[1] [2] over a commutative ring is an -algebra obeying any of the following equivalent conditions:

  1. There exists an -algebra such that the tensor product of -algebras is Morita equivalent to .
  2. The -algebra is Morita equivalent to , where is the opposite algebra of .
  3. The center of is , and is separable.
  4. is finitely generated, faithful, and projective as an -module, and the tensor product is isomorphic to via the map sending to the endomorphism of .

Examples over a field

Over a field , Azumaya algebras are completely classified by the Artin–Wedderburn theorem since they are the same as central simple algebras. These are algebras isomorphic to the matrix ring for some division algebra over whose center is just . For example, quaternion algebras provide examples of central simple algebras.

Examples over local rings

Given a local commutative ring , an -algebra is Azumaya if and only if is free of positive finite rank as an -module, and the algebra is a central simple algebra over , hence all examples come from central simple algebras over .

Cyclic algebras

There is a class of Azumaya algebras called cyclic algebras which generate all similarity classes of Azumaya algebras over a field , hence all elements in the Brauer group (defined below). Given a finite cyclic Galois field extension of degree , for every and any generator there is a twisted polynomial ring , also denoted , generated by an element such that

and the following commutation property holds:

As a vector space over , has basis with multiplication given by

Note that give a geometrically integral variety[3] , there is also an associated cyclic algebra for the quotient field extension .

Brauer group of a ring

Over fields, there is a cohomological classification of Azumaya algebras using Étale cohomology. In fact, this group, called the Brauer group, can be also defined as the similarity classes[1]: 3  of Azumaya algebras over a ring , where rings are similar if there is an isomorphism

of rings for some natural numbers . Then, this equivalence is in fact an equivalence relation, and if , , then , showing

is a well defined operation. This forms a group structure on the set of such equivalence classes called the Brauer group, denoted . Another definition is given by the torsion subgroup of the etale cohomology group

which is called the cohomological Brauer group. These two definitions agree when is a field.

Brauer group using Galois cohomology

There is another equivalent definition of the Brauer group using Galois cohomology. For a field extension there is a cohomological Brauer group defined as

and the cohomological Brauer group for is defined as

where the colimit is taken over all finite Galois field extensions.

Computation for a local field

Over a local non-archimedean field , such as the p-adic numbers , local class field theory gives the isomorphism of abelian groups:[4]pg 193

This is because given abelian field extensions there is a short exact sequence of Galois groups

and from Local class field theory, there is the following commutative diagram:[5]

where the vertical maps are isomorphisms and the horizontal maps are injections.

n-torsion for a field

Recall that there is the Kummer sequence[6]

giving a long exact sequence in cohomology for a field . Since Hilbert's Theorem 90 implies , there is an associated short exact sequence

showing the second etale cohomology group with coefficients in the th roots of unity is

Generators of n-torsion classes in the Brauer group over a field

The Galois symbol, or norm-residue symbol, is a map from the -torsion Milnor K-theory group to the etale cohomology group , denoted by

[6]

It comes from the composition of the cup product in etale cohomology with the Hilbert's Theorem 90 isomorphism

hence

It turns out this map factors through , whose class for is represented by a cyclic algebra . For the Kummer extension where , take a generator of the cyclic group, and construct . There is an alternative, yet equivalent construction through Galois cohomology and etale cohomology. Consider the short exact sequence of trivial -modules

The long exact sequence yields a map

For the unique character

with , there is a unique lift

and

note the class is from the Hilberts theorem 90 map . Then, since there exists a primitive root of unity , there is also a class

It turns out this is precisely the class . Because of the norm residue isomorphism theorem, is an isomorphism and the -torsion classes in are generated by the cyclic algebras .

Skolem–Noether theorem

One of the important structure results about Azumaya algebras is the Skolem–Noether theorem: given a local commutative ring and an Azumaya algebra , the only automorphisms of are inner. Meaning, the following map is surjective:

where is the group of units in This is important because it directly relates to the cohomological classification of similarity classes of Azumaya algebras over a scheme. In particular, it implies an Azumaya algebra has structure group for some , and the Čech cohomology group

gives a cohomological classification of such bundles. Then, this can be related to using the exact sequence

It turns out the image of is a subgroup of the torsion subgroup .

On a scheme

An Azumaya algebra on a scheme X with structure sheaf , according to the original Grothendieck seminar, is a sheaf of -algebras that is étale locally isomorphic to a matrix algebra sheaf; one should, however, add the condition that each matrix algebra sheaf is of positive rank. This definition makes an Azumaya algebra on into a 'twisted-form' of the sheaf . Milne, Étale Cohomology, starts instead from the definition that it is a sheaf of -algebras whose stalk at each point is an Azumaya algebra over the local ring in the sense given above.

Two Azumaya algebras and are equivalent if there exist locally free sheaves and of finite positive rank at every point such that

[1]: 6 

where is the endomorphism sheaf of . The Brauer group of (an analogue of the Brauer group of a field) is the set of equivalence classes of Azumaya algebras. The group operation is given by tensor product, and the inverse is given by the opposite algebra. Note that this is distinct from the cohomological Brauer group which is defined as .

Example over Spec(Z[1/n])

The construction of a quaternion algebra over a field can be globalized to by considering the noncommutative -algebra

then, as a sheaf of -algebras, has the structure of an Azumaya algebra. The reason for restricting to the open affine set is because the quaternion algebra is a division algebra over the points is and only if the Hilbert symbol

which is true at all but finitely many primes.

Example over Pn

Over Azumaya algebras can be constructed as for an Azumaya algebra over a field . For example, the endomorphism sheaf of is the matrix sheaf

so an Azumaya algebra over can be constructed from this sheaf tensored with an Azumaya algebra over , such as a quaternion algebra.

Applications

There have been significant applications of Azumaya algebras in diophantine geometry, following work of Yuri Manin. The Manin obstruction to the Hasse principle is defined using the Brauer group of schemes.

See also

References

  1. ^ a b c Milne, James S. (1980). Étale cohomology (PDF). Princeton, N.J.: Princeton University Press. ISBN 0-691-08238-3. OCLC 5028959. Archived from the original (PDF) on 21 June 2020.
  2. ^ Borceux, Francis; Vitale, Enrico (2002). "Azumaya categories" (PDF). Applied Categorical Structures. 10: 449–467.
  3. ^ meaning it is an integral variety when extended to the algebraic closure of its base field
  4. ^ Serre, Jean-Pierre. (1979). Local Fields. New York, NY: Springer New York. ISBN 978-1-4757-5673-9. OCLC 859586064.
  5. ^ "Lectures on Cohomological Class Field Theory" (PDF). Archived (PDF) from the original on 22 June 2020.
  6. ^ a b Srinivas, V. (1994). "8. The Merkurjev-Suslin Theorem". Algebraic K-Theory (Second ed.). Boston, MA: Birkhäuser Boston. pp. 145–193. ISBN 978-0-8176-4739-1. OCLC 853264222.
Brauer group and Azumaya algebras
Division algebras

Read other articles:

Arak AmornsupasiriNama asalอารักษ์ อมรศุภศิริLahir2 September 1984 (umur 39)Nama lainPaePekerjaanPemeranmusisiKarya terkenalChon dalam BodyKarier musikInstrumenGitarLabelSmallroom Arak Amornsupasiri (Thai: อารักษ์ อมรศุภศิริcode: th is deprecated , lahir 2 September 1984[1]), nama panggilan Pae (เป้), adalah pemeran dan musisi asal Thailand. Ia memulai karir musiknya sebagai gitaris untuk band ro...

 

Langrolay-sur-Rance Langorlae Lambang kebesaranLangrolay-sur-Rance Lokasi di Region Bretagne Langrolay-sur-Rance Koordinat: 48°33′17″N 2°00′05″W / 48.5547°N 2.0014°W / 48.5547; -2.0014NegaraPrancisRegionBretagneDepartemenCôtes-d'ArmorArondisemenDinanKantonPloubalayAntarkomuneRance-FrémurPemerintahan • Wali kota (2014–2020) Jean-Paul GaincheLuas • Land15,28 km2 (204 sq mi) • Populasi2838 • Ke...

 

Chemical compound 6-ChloronicotineIdentifiers IUPAC name 2-chloro-5-[(2S)-1-methylpyrrolidin-2-yl]pyridine CAS Number112091-17-5PubChem CID10631771ChemSpider8807133CompTox Dashboard (EPA)DTXSID90442718 Chemical and physical dataFormulaC10H13ClN2Molar mass196.68 g·mol−13D model (JSmol)Interactive image SMILES CN1CCC[C@H]1C2=CN=C(C=C2)Cl InChI InChI=1S/C10H13ClN2/c1-13-6-2-3-9(13)8-4-5-10(11)12-7-8/h4-5,7,9H,2-3,6H2,1H3/t9-/m0/s1Key:SVVOLGNZRGLPIU-VIFPVBQESA-N This article provides insu...

Janda IndianInggris: Indian WidowSenimanJoseph WrightTahun1783 (1783)/1784Tipecat minyak pada kanvasLokasiMuseum dan Galeri Seni Derby, Derby Janda Indian atau Indian Widow adalah lukisn dari Joseph Wright, selesai di akhir 1783 atau awal 1784 dan pertama kali dipamerkan di pameran tunggalnya tahun 1785 di London. Lukisan ini sekarang dipamerkan di Museum dan Galeri Seni Derby, Inggris.[1] Penjelasan Janda Indian adalah judul yang dipakai oleh pelukis sendiri, tetapi judul yang l...

 

تروي    شعار   الإحداثيات 42°43′54″N 73°41′33″W / 42.731666666667°N 73.6925°W / 42.731666666667; -73.6925   [1] تاريخ التأسيس 1787  تقسيم إداري  البلد الولايات المتحدة[2][3]  التقسيم الأعلى مقاطعة رينسيلير  عاصمة لـ مقاطعة رينسيلير  خصائص جغرافية  المساحة 28....

 

Pour les articles homonymes, voir Starfighter. Lockheed F-104G Starfighter Un F-104C de l’USAF dans un musée. Constructeur Lockheed Corporation Rôle avion d'interception. Statut Retiré du service Premier vol 4 mars 1954 Mise en service Février 1958 Date de retrait 1969 (États-Unis)1983 (Belgique)1986 (Canada)1986 (Japon)1987 (Allemagne)2004 (Italie) Nombre construits 2 578 Équipage 1 pilote Motorisation Moteur General Electric J79-GE-11A Nombre 1 Type Turboréacteur Poussée uni...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Februari 2023. Kerang Farrer Klasifikasi ilmiah Kerajaan: Animalia Filum: Mollusca Kelas: Bivalvia Ordo: Ostreoida Famili: Pectinidae Genus: Chlamys Spesies: C. farreri Nama binomial Chlamys farreri(Müller, 1776) Kerang Farrer, yang juga dikenal sebagai kerang...

 

Ini adalah nama Korea; marganya adalah Gyeon. Kyeon Mi-riLahir27 Januari 1965 (umur 59)Seoul, Korea SelatanAlmamaterUniversitas Sejong – Jurusan Dansa[1]PekerjaanPemeran, penyanyiTahun aktif1984–sekarangSuami/istriIm Young-gyu (1987–93; bercerai) Lee Hong-hun ​(m. 1998)​KeluargaLee Yu-bi (putri) Lee Da-in (putri) Lee Ki-baek (putra)Nama KoreaHangul견미리 Hanja甄美里 Alih AksaraGyeon Mi-riMcCune–ReischauerKyŏn Mi-ri Kyeon Mi-ri (lah...

 

International standard This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) The topic of this article may not meet Wikipedia's general notability guideline. Please help to demonstrate the notability of the topic by citing reliable secondary sources that are independent of the topic and provide significant coverage of it beyond a mere trivial mention. If notability cannot be shown, the article ...

Dream of MeSingel oleh Anggundari album AnggunDirilis Jepang - 1998FormatCD SingleDirekam1997GenrePopDurasi4:03LabelSony Music/Epick JapanProduserErick Benzi Dream of Me adalah singel ketiga Anggun dari album Anggun (edisi Jepang dari album Snow on the Sahara) pada tahun 1998. Singel ini hanya dirilis di Jepang dan tanpa disertai dengan video klip. Sayangnya, singel ini gagal di pasaran Jepang dan tidak mampu meraih kesuksesan yang diharapkan. Track CD Singel Dream Of Me (4:03) Kembali (4:26)...

 

普密蓬·阿杜德ภูมิพลอดุลยเดช泰国先王普密蓬·阿杜德(官方肖像) 泰國國王統治1946年6月9日-2016年10月13日(70年126天)加冕1950年5月5日前任阿南塔玛希敦繼任玛哈·哇集拉隆功总理见列表出生(1927-12-05)1927年12月5日 美國马萨诸塞州剑桥奥本山醫院(英语:Mount Auburn Hospital)逝世2016年10月13日(2016歲—10—13)(88歲) 泰國曼谷西里拉醫院安葬曼谷僧...

 

Bhikkhu Bodhi Informasi pribadiLahirJeffrey Block10 Desember 1944 (umur 79)Brooklyn, New York, Amerika SerikatAgamaAgama BuddhaKebangsaanAmerika SerikatMazhabTheravadaPendidikanBrooklyn CollegeClaremont Graduate UniversityPekerjaancendekiawan-biksu; presiden Buddhist Publication SocietyKedudukan seniorGuruVen. Ananda MaitreyaLokasiBuddhist Publication SocietySangha Council of Bodhi MonasteryYin Shun FoundationPendahuluVen. Nyanaponika Thera (penyunting dan presiden BPS)PenerusMr. Kariyav...

إرنستو ليكونا (بالإسبانية: Ernesto Lecuona)‏  معلومات شخصية اسم الولادة (بالإسبانية: Ernesto Sixto de la Asunción Lecuona Casado)‏  الميلاد 6 أغسطس 1895(1895-08-06)كوبا الوفاة 29 نوفمبر 1963 (68 سنة)سانتا كروث دي تينيريفه سبب الوفاة ربو  الإقامة تامبا (1960–)[1]  مواطنة إسبانيا  الحياة العملية الم�...

 

British politician and peer His GraceThe Duke of RichmondKG GCVO CBPhotograph of Lord Richmond, 1907Member of Parliament for ChichesterIn office1885–1889Preceded byLord Henry LennoxJohn Abel SmithSucceeded byLord Walter Gordon-LennoxMember of Parliament for West SussexIn office1869–1885Serving with Sir Walter Barttelot, BtPreceded byHon. Henry WyndhamSir Walter Barttelot, BtSucceeded byConstituency divided Personal detailsBornCharles Henry Gordon-Lennox(1845-12-27)27 December 1845...

 

Major League Baseball team season 2011 Pittsburgh PiratesLeagueNational LeagueDivisionCentralBallparkPNC ParkCityPittsburgh, Pennsylvania[1]Record72–90 (.444)Divisional place4thOwnersRobert NuttingGeneral managersNeal HuntingtonManagersClint HurdleTelevisionRoot Sports PittsburghRadioWPGB-FM(Steve Blass, Greg Brown, Tim Neverett, Bob Walk, John Wehner) ← 2010 Seasons 2012 → The 2011 Pittsburgh Pirates season was the franchise's 125th season as a member of...

The examples and perspective in this article may not represent a worldwide view of the subject. You may improve this article, discuss the issue on the talk page, or create a new article, as appropriate. (August 2012) (Learn how and when to remove this message) Contemporary debates about animal welfare and animal rights can be traced back to ancient history. Records from as early as the 6th century before the common era (BCE) include discussions of animal ethics in Jain and Greek texts. The r...

 

Pour les articles homonymes, voir Cathédrale de la Sainte-Trinité. Cathédrale de la Sainte-Trinité de Laval Le chevet de la cathédrale. Présentation Culte Catholique romain Dédicataire Sainte Trinité Type Cathédrale Rattachement Diocèse de Laval (siège) Début de la construction XIe siècle Fin des travaux XXe siècle Style dominant Roman, gothique, Renaissance Protection  Classée MH (1840) Géographie Pays France Région Pays de la Loire Département Mayenne ...

 

محمد القاهر بالله محمد بن أحمد بن محمد بن جعفر بن محمد بن هارون بن محمد بن عبد الله بن محمد بن علي بن عبد الله بن العباس بن عبد المطلب دينار ضرب في عهد القاهر بالله عام 321هـ معلومات شخصية الميلاد 899 (286 هـ)بغداد  الوفاة 950 (339 هـ) (51 سنة)بغداد  مواطنة الدولة العباسية  الكني�...

Batavian flag. The Batavian flag (contemporaneous Dutch: Bataafsche vlag; also called Nationale vlag, National flag[1]) is a Dutch historical flag. It was designed by Dirk Langendijk in January 1796,[2] and introduced in March 1796 as the official flag of the navy of the Batavian Republic, replacing the Statenvlag (itself originating from the Prince's Flag). Description Detail of the Jack. Decree of the States General, describing the Jack. The flag's colours and rows remained...

 

French footballer Gaëtan Courtet Courtet in April 2012Personal informationDate of birth (1989-02-22) 22 February 1989 (age 35)Place of birth Lorient, FranceHeight 1.80 m (5 ft 11 in)Position(s) StrikerTeam informationCurrent team DunkerqueNumber 18Youth career1996–2002 Lanester2002–2010 LorientSenior career*Years Team Apps (Gls)2010 Lorient B 12 (7)2010–2015 Reims 105 (18)2014–2015 → Brest (loan) 17 (5)2013 Reims B 1 (0)2015–2017 Auxerre 73 (21)2017–2020 Lor...