Atacama Cosmology Telescope

Atacama Cosmology Telescope
The Atacama Cosmology Telescope, with Cerro Toco in the background
Alternative namesACTpol Edit this at Wikidata
Part ofLlano de Chajnantor Observatory Edit this on Wikidata
Location(s)Atacama Desert
Coordinates22°57′31″S 67°47′15″W / 22.9586°S 67.7875°W / -22.9586; -67.7875 Edit this at Wikidata
Wavelength28, 41, 90, 150, 220 GHz (1.07, 0.73, 0.33, 0.20, 0.14 cm)
First light22 October 2007 Edit this on Wikidata
Telescope stylecosmic microwave background experiment
radio telescope Edit this on Wikidata
Diameter6 meter
Websiteact.princeton.edu Edit this at Wikidata
Atacama Cosmology Telescope is located in Chile
Atacama Cosmology Telescope
Location of Atacama Cosmology Telescope
  Related media on Commons

The Atacama Cosmology Telescope (ACT) was a cosmological millimeter-wave telescope located on Cerro Toco in the Atacama Desert in the north of Chile.[1] ACT made high-sensitivity, arcminute resolution, microwave-wavelength surveys of the sky in order to study the cosmic microwave background radiation (CMB), the relic radiation left by the Big Bang process. Located 40 km from San Pedro de Atacama, at an altitude of 5,190 metres (17,030 ft), it was one of the highest ground-based telescopes in the world.[a]

Cosmic microwave background experiments like ACT, the South Pole Telescope, the WMAP satellite, and the Planck satellite have provided foundational evidence for the standard Lambda-CDM model of cosmology. ACT first detected seven acoustic peaks in the power spectrum of the CMB, discovered the most extreme galaxy cluster and made the first statistical detection of the motions of clusters of galaxies via the pairwise kinematic Sunyaev-Zeldovich Effect.[3]

ACT was built in 2007 and saw first light in October 2007 with its first receiver, the Millimeter Bolometer Array Camera (MBAC). ACT had two major receiver upgrades which enabled polarization sensitive observations: ACTPol[4] (2013–2016) and Advanced ACT[5] (2017–2022). ACT observations ended in mid-2022. ACT is funded by the US National Science Foundation.

Science goals

Measurements of cosmic microwave background radiation (CMB) by experiments such as COBE, BOOMERanG, WMAP, CBI, the South Pole Telescope and many others, have greatly advanced our knowledge of cosmology, particularly the early evolution of the universe. At the arcminute resolutions probed by ACT, the Sunyaev-Zeldovich effect, by which galaxy clusters leave an imprint on the CMB, is prominent. This method of detection provides a redshift-independent measurement of the mass of the clusters, meaning that very distant, ancient clusters are as easy to detect as nearby clusters.

Atacama Cosmology Telescope observing patches and depth map

Detection of galaxy clusters and follow-up measurements in visible and X-ray light, provide a picture of the evolution of structure in the universe since the Big Bang. This is used to improve our understanding of the nature of the mysterious dark energy which seems to be a dominant component of the universe.

High sensitivity observations of the cosmic microwave background radiation allow precision measurements of cosmological parameters, detection of galaxy clusters among other scientific goals, probing the early and late stages in the history of the evolution of the universe.

Scientific highlights

Throughout its operation, ACT contributed the scientific community with:

Location

Aerial view of the Andes as seen from the vicinity of Calama, Chile. ACT is located on Cerro Toco, near Cerro Chajnantor and the Licancabur volcano.

Water vapor in the atmosphere emits microwave radiation which contaminates measurements of the CMB, for this reason CMB telescopes benefit from arid, high-altitude locations. ACT is located in the dry and high (yet easily accessible) Chajnantor plateau in the Andean mountains in the Atacama Desert in northern Chile. Due to the exceptional observing conditions of the Atacama Desert and its accessibility by road and nearby ports, several other observatories are located in the region, including CBI, ASTE, Nanten, APEX and ALMA. These astronomical observatories and telescopes form the Llano de Chajnantor Observatory, a cluster of astronomical telescopes primarily in millimeter and sub-millimeter wavelengths.

Design

The Atacama Cosmology Telescope viewed from the top of the outer ground screen. The top half of the segmented, primary mirror can be seen above the inner ground screen that moves with the telescope.
The Atacama Cosmology Telescope. In this picture, the ground screen had not yet been completed, allowing the telescope to be seen.

Telescope

The ACT is an off-axis Gregorian telescope. This off-axis configuration is beneficial to minimize artifacts in the point spread function. The telescope reflectors consist of a six-metre (236 in) primary mirror and a two-metre (79 in) secondary mirror. Both mirrors are composed of segments, consisting of 71 (primary) and 11 (secondary) aluminum panels. These panels follow the shape of an ellipsoid of revolution and are carefully aligned to form a joint surface. Unlike most telescopes which track the rotating sky during observation, the ACT observes the sky by keeping the telescope oriented at a constant elevation and by scanning back and forth in azimuth at the relatively rapid rate of two degrees per second. The rotating portion of the telescope weighs approximately 32 tonnes (35 short tons), creating a substantial engineering challenge. A ground screen surrounding the telescope blocks contamination from microwave radiation emitted by the ground. The design, manufacture and construction of the telescope were done by Dynamic Structures in Vancouver, British Columbia.

Instrument

ACT can accommodate three instrument cameras simultaneously. Over time these cameras were upgraded from the original MBAC design to the Advanced ACT instrument progressively adding more features like polarization sensitivity and the ability to sense multiple frequencies in one instrument module. Each camera in ACT consists of a three lens system, the Gregorian focus is reimaged into a detector focal plane, a Lyot stop reimages the primary mirror allowing stray light mitigation.

The three lenses in ACT are made of cryogenically cooled anti-reflection coated silicon, a desirable material for instruments in the millimeter due to its high index of refraction (n=3). Anti-reflection coatings in ACTPol and AdvACT are made of sub-wavelength structured metamaterial silicon, an innovation in ground based CMB telescopes at the time. The optical components and the detector module are kept at a vacuum with a plastic window. A stack of filters reject infra-red radiation which is detrimental for mm-wavelength observations.

Radiation is thermally coupled to transition-edge sensor bolometers, which are read out using an array of SQUIDs.

Observations

Observations are made at resolutions of about an arcminute (1/60th of a degree) in three frequencies: 145 GHz, 215 GHz and 280 GHz. Each frequency is measured by a 3 cm × 3 cm (1.2 in × 1.2 in), 1024 element array, for a total of 3072 detectors. The detectors are superconducting transition-edge sensors, a technology whose high sensitivity allows measurements of the temperature of the CMB to within a few millionths of a degree.[16] A system of cryogenic helium refrigerators keep the detectors a third of a degree above absolute zero.

Detectors

ACT has had three generations of cameras. Each camera is the result of the development of specialized detector technology which has been optimized through the years. These cameras take advantage of superconducting transition edge sensor arrays to achieve high sensitivity.

The first array of cameras to populate the ACT focal plane (MBAC) consisted of three cameras where each one was sensitive to its own band and had no polarization sensitivity. The second generation of cameras (ACTPol) added polarization sensitivity and the first camera to be sensitive to two bands (dichroic). The third generation of cameras (AdvACT) incorporated the advances achieved in ACTPol, which allowed all cameras to be sensitive to two bands.

Phase Arrays Freq. (GHz) Sens. (μK√s) Pol. Years Patches
MBAC ar1 148 30 No 2008–2010 Equ South
ar2 217 ? No 2008–2010
ar3 277 ? No 2010
ACTPol pa1 150 17–29 Yes 2013–2015 D2 D5 D6 D56 D8 BN
pa2 150 13–18 Yes 2014–2016
pa3 90 16 Yes 2015–2016
150 21–22
AdvACT pa4 150 18.2 Yes 2017–2021 AA Day‑N Day‑S
220 34.1
pa5 98 12.5 Yes 2017–2021
150 13.9
pa6 98 11.3 Yes 2017–2019
150 12.6
pa7 27 ? Yes 2020–2021
39 ?

Institutions

ACT has collaborators at Princeton University, Cornell University, the University of Pennsylvania, NASA/GSFC, the Johns Hopkins University, the University of British Columbia, NIST, the Pontificia Universidad Católica de Chile, the University of KwaZulu-Natal, Perimeter Institute for Theoretical Physics, the Canadian Institute for Theoretical Astrophysics, Stanford University, Stony Brook University, Cardiff University, Argonne National Laboratory, Haverford College, Rutgers University, the University of Pittsburgh, UC Berkeley, University of Southern California, the University of Oxford, the University of Paris-Saclay, University of Illinois at Urbana-Champaign, SLAC National Accelerator Laboratory, Caltech, McGill University, the Center for Computational Astrophysics, Arizona State University, Columbia University, Carnegie Mellon University, the University of Chicago, Haverford College, Florida State University, West Chester University, Yale University, and the University of Toronto.[17]

See also

Notes

  1. ^ The Receiver Lab Telescope (RLT), an 80 cm (31 in) instrument, is higher at 5,525 m (18,125 ft), but is not permanent as it is fixed to the roof of a movable shipping container.[2] The 2009 University of Tokyo Atacama Observatory is significantly higher than both.

References

  1. ^ Fowler, J. W.; Niemack, M. D.; Dicker, S. R.; Aboobaker, A. M.; Ade, P. A. R.; Battistelli, E. S.; Devlin, M. J.; Fisher, R. P.; Halpern, M.; Hargrave, P. C.; Hincks, A. D. (10 June 2007). "Optical design of the Atacama Cosmology Telescope and the Millimeter Bolometric Array Camera". Applied Optics. 46 (17): 3444–3454. arXiv:astro-ph/0701020. Bibcode:2007ApOpt..46.3444F. doi:10.1364/AO.46.003444. ISSN 0003-6935. PMID 17514303. S2CID 10833374.
  2. ^ Marrone; et al. (2005). "Observations in the 1.3 and 1.5 THz Atmospheric Windows with the Receiver Lab Telescope". Sixteenth International Symposium on Space Terahertz Technology: 64. arXiv:astro-ph/0505273. Bibcode:2005stt..conf...64M.
  3. ^ Hand, Nick; Addison, Graeme E.; Aubourg, Eric; Battaglia, Nick; Battistelli, Elia S.; Bizyaev, Dmitry; Bond, J. Richard; Brewington, Howard; Brinkmann, Jon; Brown, Benjamin R.; Das, Sudeep; Dawson, Kyle S.; Devlin, Mark J.; Dunkley, Joanna; Dunner, Rolando (23 July 2012). "Evidence of Galaxy Cluster Motions with the Kinematic Sunyaev-Zel'dovich Effect". Physical Review Letters. 109 (4): 041101. arXiv:1203.4219. doi:10.1103/PhysRevLett.109.041101. ISSN 0031-9007. PMID 23006072.
  4. ^ Niemack, M. D.; Ade, P. A. R.; Aguirre, J.; Barrientos, F.; Beall, J. A.; Bond, J. R.; Britton, J.; Cho, H. M.; Das, S.; Devlin, M. J.; Dicker, S. (16 July 2010). "ACTPol: a polarization-sensitive receiver for the Atacama Cosmology Telescope". In Holland, Wayne S.; Zmuidzinas, Jonas (eds.). Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy V. Vol. 7741. San Diego, California, USA. pp. 537–557. arXiv:1006.5049. doi:10.1117/12.857464. S2CID 27705474.{{cite book}}: CS1 maint: location missing publisher (link)
  5. ^ Henderson, S. W.; Allison, R.; Austermann, J.; Baildon, T.; Battaglia, N.; Beall, J. A.; Becker, D.; De Bernardis, F.; Bond, J. R.; Calabrese, E.; Choi, S. K. (1 August 2016). "Advanced ACTPol Cryogenic Detector Arrays and Readout". Journal of Low Temperature Physics. 184 (3): 772–779. arXiv:1510.02809. Bibcode:2016JLTP..184..772H. doi:10.1007/s10909-016-1575-z. ISSN 1573-7357. S2CID 53411729.
  6. ^ Dunkley, J.; Hlozek, R.; Sievers, J.; Acquaviva, V.; Ade, P. A. R.; Aguirre, P.; Amiri, M.; Appel, J. W.; Barrientos, L. F.; Battistelli, E. S.; Bond, J. R.; Brown, B.; Burger, B.; Chervenak, J.; Das, S. (20 September 2011). "The Atacama Cosmology Telescope: Cosmological Parameters from the 2008 Power Spectrum". The Astrophysical Journal. 739 (1): 52. arXiv:1009.0866. doi:10.1088/0004-637X/739/1/52. ISSN 0004-637X. S2CID 31436593.
  7. ^ Das, Sudeep; Sherwin, Blake D.; Aguirre, Paula; Appel, John W.; Bond, J. Richard; Carvalho, C. Sofia; Devlin, Mark J.; Dunkley, Joanna; Dünner, Rolando; Essinger-Hileman, Thomas; Fowler, Joseph W.; Hajian, Amir; Halpern, Mark; Hasselfield, Matthew; Hincks, Adam D. (5 July 2011). "Detection of the Power Spectrum of Cosmic Microwave Background Lensing by the Atacama Cosmology Telescope". Physical Review Letters. 107 (2): 021301. arXiv:1103.2124. doi:10.1103/PhysRevLett.107.021301. PMID 21797590.
  8. ^ Menanteau, Felipe; Hughes, John P.; Sifón, Cristóbal; Hilton, Matt; González, Jorge; Infante, Leopoldo; Felipe Barrientos, L.; Baker, Andrew J.; Bond, John R.; Das, Sudeep; Devlin, Mark J.; Dunkley, Joanna; Hajian, Amir; Hincks, Adam D.; Kosowsky, Arthur (20 March 2012). "THE ATACAMA COSMOLOGY TELESCOPE: ACT-CL J0102–4915 "EL GORDO," A MASSIVE MERGING CLUSTER AT REDSHIFT 0.87". The Astrophysical Journal. 748 (1): 7. arXiv:1109.0953. doi:10.1088/0004-637X/748/1/7. ISSN 0004-637X. S2CID 204931508.
  9. ^ Ferreira, P. G.; Juszkiewicz, R.; Feldman, H. A.; Davis, M.; Jaffe, A. H. (10 April 1999). "Streaming Velocities as a Dynamical Estimator of Ω". The Astrophysical Journal. 515 (1): L1–L4. doi:10.1086/311959. ISSN 0004-637X.
  10. ^ Hand, Nick; Addison, Graeme E.; Aubourg, Eric; Battaglia, Nick; Battistelli, Elia S.; Bizyaev, Dmitry; Bond, J. Richard; Brewington, Howard; Brinkmann, Jon; Brown, Benjamin R.; Das, Sudeep; Dawson, Kyle S.; Devlin, Mark J.; Dunkley, Joanna; Dunner, Rolando (23 July 2012). "Evidence of Galaxy Cluster Motions with the Kinematic Sunyaev-Zel'dovich Effect". Physical Review Letters. 109 (4): 041101. arXiv:1203.4219. doi:10.1103/PhysRevLett.109.041101. ISSN 0031-9007. PMID 23006072.
  11. ^ Choi, Steve K.; Hasselfield, Matthew; Ho, Shuay-Pwu Patty; Koopman, Brian; Lungu, Marius; Abitbol, Maximilian H.; Addison, Graeme E.; Ade, Peter A. R.; Aiola, Simone; Alonso, David; Amiri, Mandana; Amodeo, Stefania; Angile, Elio; Austermann, Jason E.; Baildon, Taylor (30 December 2020). "The Atacama Cosmology Telescope: a measurement of the Cosmic Microwave Background power spectra at 98 and 150 GHz". Journal of Cosmology and Astroparticle Physics. 2020 (12): 045. arXiv:2007.07289. doi:10.1088/1475-7516/2020/12/045. ISSN 1475-7516. S2CID 220525420.
  12. ^ Madhavacheril, Mathew; Sehgal, Neelima; Allison, Rupert; Battaglia, Nick; Bond, J. Richard; Calabrese, Erminia; Caligiuri, Jerod; Coughlin, Kevin; Crichton, Devin; Datta, Rahul; Devlin, Mark J.; Dunkley, Joanna; Dünner, Rolando; Fogarty, Kevin; Grace, Emily; Hajian, Amir; Hasselfield, Matthew; Hill, J. Colin; Hilton, Matt; Hincks, Adam D.; Hlozek, Renée; Hughes, John P.; Kosowsky, Arthur; Louis, Thibaut; Lungu, Marius; McMahon, Jeff; Moodley, Kavilan; Munson, Charles; Naess, Sigurd; Nati, Federico; Newburgh, Laura; Niemack, Michael D.; Page, Lyman A.; Partridge, Bruce; Schmitt, Benjamin; Sherwin, Blake D.; Sievers, Jon; Spergel, David N.; Staggs, Suzanne T.; Thornton, Robert; Van Engelen, Alexander; Ward, Jonathan T.; Wollack, Edward J. (13 April 2015). "Evidence of Lensing of the Cosmic Microwave Background by Dark Matter Halos". Physical Review Letters. 114 (15). arXiv:1411.7999. doi:10.1103/PhysRevLett.114.151302.
  13. ^ Atacama Cosmology Telescope Collaboration; Schaan, Emmanuel; Ferraro, Simone; Amodeo, Stefania; Battaglia, Nicholas; Aiola, Simone; Austermann, Jason E.; Beall, James A.; Bean, Rachel; Becker, Daniel T.; Bond, Richard J.; Calabrese, Erminia; Calafut, Victoria; Choi, Steve K.; Denison, Edward V. (15 March 2021). "Atacama Cosmology Telescope: Combined kinematic and thermal Sunyaev-Zel'dovich measurements from BOSS CMASS and LOWZ halos". Physical Review D. 103 (6): 063513. arXiv:2009.05557. doi:10.1103/PhysRevD.103.063513.
  14. ^ Atacama Cosmology Telescope Collaboration; Schaan, Emmanuel; Ferraro, Simone; Amodeo, Stefania; Battaglia, Nicholas; Aiola, Simone; Austermann, Jason E.; Beall, James A.; Bean, Rachel; Becker, Daniel T.; Bond, Richard J.; Calabrese, Erminia; Calafut, Victoria; Choi, Steve K.; Denison, Edward V. (15 March 2021). "Atacama Cosmology Telescope: Combined kinematic and thermal Sunyaev-Zel'dovich measurements from BOSS CMASS and LOWZ halos". Physical Review D. 103 (6): 063513. arXiv:2009.05557. doi:10.1103/PhysRevD.103.063513.
  15. ^ Naess, Sigurd; Aiola, Simone; Battaglia, Nick; Bond, Richard J.; Calabrese, Erminia; Choi, Steve K.; Cothard, Nicholas F.; Halpern, Mark; Hill, J. Colin; Koopman, Brian J.; Devlin, Mark; McMahon, Jeff; Dicker, Simon; Duivenvoorden, Adriaan J.; Dunkley, Jo (1 December 2021). "The Atacama Cosmology Telescope: A Search for Planet 9". The Astrophysical Journal. 923 (2): 224. arXiv:2104.10264. doi:10.3847/1538-4357/ac2307. ISSN 0004-637X.
  16. ^ Fowler, J.; et al. (2007). "Optical Design of the Atacama Cosmology Telescope and the Millimeter Bolometric Array Camera". Applied Optics. 46 (17): 3444–54. arXiv:astro-ph/0701020. Bibcode:2007ApOpt..46.3444F. doi:10.1364/AO.46.003444. PMID 17514303. S2CID 10833374.
  17. ^ "ACT public webpage".

Read other articles:

Japanese anime television series This article is about the anime series. For the manga series, see My-HiME (manga). For the short story, see The Dancing Girl (short story). My-HiMEMain cast of Mai-HiME舞-HiME(Mai-HiME)GenreSlice of life, supernatural[1]Created byHajime Yatate Anime television seriesDirected byMasakazu ObaraProduced byHisanori KunisakiNaotake FurusatoWritten byHiroyuki YoshinoMusic byYuki KajiuraStudioSunriseLicensed byAUS: Madman Enterta...

 

Elias I dari MaineLambang MainePasanganMatilda dari Château-du-LoirAgnes dari PoitouKeluarga bangsawanLa Flèche-de BaugencyBapakJean de la FlecheIbuPaula dari MaineMeninggal11 Juli 1110 Élie I (juga Hélie atau Elias) (meninggal 11 Juli 1110),[1] disebut de la Flèche atau de Baugency, merupakan Comte Maine, menggantikan sepupunya Hugues V dari Maine. Kehidupan Ia adalah putra Jean de la Flèche dan Paula, putri Herbert I dari Maine.[2] Pada tahun 1092, sepupunya Hugues V m...

 

Peta menunjukkan lokasi Initao Initao adalah munisipalitas yang terletak di provinsi Misamis Oriental, Filipina. Pada tahun 2010, munisipalitas ini memiliki populasi sebesar 30.523 jiwa dan 6.372 rumah tangga. Pembagian wilayah Secara administratif Initao terbagi menjadi 16 barangay, yaitu: Aluna Andales Apas Calacapan Gimangpang Jampason Kamelon Kanitoan Oguis Pagahan Poblacion Pontacon San Pedro Sinalac Tawantawan Tubigan Sarana pendidikan Sarana pendidikan yang ada di wilayah ini antara la...

It has been suggested that Battle of Siversk be merged into this article. (Discuss) Proposed since March 2024. Battle in the Russian invasion of Ukraine For the larger eastern campaign, see Eastern Ukraine campaign. For other uses, see Battle of Donbas. Battle of DonbasPart of the eastern Ukraine campaign of the Russian invasion of UkraineMilitary situation as of 3 August 2022: pink highlights areas held by Russia and its proxies, yellow highlights areas held by the Ukrainian government.Date1...

 

This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: National Center for Hydrology and Meteorology – news · newspapers · books · scholar · JSTOR (August 2020) The National Center for Hydrology and Meteorology (Dzongkha: རྒྱལ་ཡོངས་ཆུ་དཔྱད་དང་གནམ ་གཤ�...

 

Gunung IliwerungTitik tertinggiKetinggian1.018 m (3.340 kaki)Koordinat8°32′33″S 123°33′45″E / 8.5423822°S 123.5625243°E / -8.5423822; 123.5625243Koordinat: 8°32′33″S 123°33′45″E / 8.5423822°S 123.5625243°E / -8.5423822; 123.5625243 GeografiGunung IliwerungLokasi Gunung Iliwerung di Pulau Lembata, NTTTampilkan peta Pulau TimorGunung IliwerungGunung Iliwerung (Nusa Tenggara Timur)Tampilkan peta Nusa Tenggara TimurLeta...

Tim Sparv Sparv pada 2013Informasi pribadiNama lengkap Tim SparvTanggal lahir 20 Februari 1987 (umur 37)Tempat lahir Oravais, FinlandiaTinggi 1,94 m (6 ft 4+1⁄2 in)Posisi bermain GelandangKarier junior1993–2003 Norrvalla FF2003–2006 SouthamptonKarier senior*Tahun Tim Tampil (Gol)2006–2007 Southampton 0 (0)2007–2009 Halmstad 51 (1)2008 → VPS (pinjaman) 8 (0)2010–2013 FC Groningen 98 (4)2013–2014 Greuther Fürth 28 (1)2014–2020 Midtjylland 138 (3)2020�...

 

Artikel ini merupakan bagian dari seriJoko Widodo Sebelum menjadi presiden Wali Kota Surakarta BST Pilkada Jakarta Gubernur DKI Jakarta LRT MRT Presiden Indonesia Petahana Pilpres 2014 (kampanye) Pilpres 2019 (kampanye) Pelantikan I Pelantikan II Kepresidenan Kabinet Kerja Kabinet Indonesia Maju Kebijakan Bali Nine Tol Laut Kereta cepat Trans-Sumatra Ibu kota baru KTT yang Dihadiri KTT APEC 2014 KTT ASEAN 2014 KTT ASEAN 2015 G20 (2014, 2015, 2016, 2017, 2019, 2020, 2021, 2022, 2023) Keluarga...

 

Yurihonjō 由利本荘市KotaBalai Kota Yurihonjō BenderaEmblemLokasi Yurihonjō di Prefektur AkitaYurihonjōLokasi di JepangKoordinat: 39°23′09″N 140°02′56″E / 39.38583°N 140.04889°E / 39.38583; 140.04889Koordinat: 39°23′09″N 140°02′56″E / 39.38583°N 140.04889°E / 39.38583; 140.04889Negara JepangWilayahTōhokuPrefektur AkitaPemerintahan • WalikotaTakanobu MinatoLuas • Total1.209,59...

Kongres Amerika Serikat ke-15Brick Capitol, kelak menjadi penjara Perang Saudara A.S. (sekitar 1861)Periode4 Maret 1817 – 4 Maret 1819Anggota42 senator185 anggota dewan3 delegasi tanpa suaraMayoritas SenatDemokrat-RepublikPresiden SenatDaniel D. TompkinsMayoritas DPRDemokrat-RepublikKetua DPRHenry ClayPres. Senat Pro TemporeJames BarbourSesiIstimewa: 4 Maret 1817 – 6 Maret 1817ke-1: 1 Desember 1817 – 20 April 1818ke-2: 16 November 1818 – 3 Maret 1819ke-14 ←→ ke-16 K...

 

بدر شاكر السياب   معلومات شخصية الميلاد 25 ديسمبر 1926(1926-12-25)أبو الخصيب، البصرة الوفاة 24 ديسمبر 1964 (37 سنة)المستشفى الأميري، الكويت الإقامة البصرة،  العراق الجنسية عراقي الحياة العملية التعلّم دار المعلمين العالية المهنة شاعر،  وكاتب  اللغات العربية  مؤلف:بدر شاك...

 

銮披汶·頌堪แปลก พิบูลสงคราม第3任泰國總理任期1938年12月16日—1944年8月1日君主國王拉玛八世前任披耶帕凤侯爵继任寬·阿派旺第8任泰國總理任期1948年4月8日—1957年9月16日君主國王拉玛九世前任寬·阿派旺继任乃朴·沙拉信 个人资料出生貝·基達桑卡(1897-07-14)1897年7月14日 暹罗暖武里府逝世1964年6月11日(1964歲—06—11)(66歲) 日本神奈川縣相模原市国籍&#...

Part of a series on theCircassiansАдыгэхэр Circassia Adyghe Xabze Circassians List of notable CircassiansCircassian genocide Circassian diaspora Turkey Jordan Israel Syria Germany United States Saudi Arabia Libya Iraq Iran Egypt Bulgaria (historical) Kosovo (historical) Romania (historical) Circassian tribes Surviving Abzakhs Besleney Bzhedug Chemirgoy Hatuqway Kabardian Natukhaj Shapsug Ubykh Destroyed or barely existing Ademey Chebsin Cherchenay Guaye Hakuchey Khatuq Khegayk Makhosh...

 

Brethren in Christ denomination Brethren in Christ ChurchClassificationProtestantOrientationAnabaptist[1]TheologyRiver Brethren[2]Originc. 1778 Marietta, PennsylvaniaSeparationsCalvary Holiness Church (1964)[3] Part of a series onAnabaptismA 1685 illustration by Jan Luyken, published in Martyrs Mirror, of Dirk Willems saving his pursuer, an act of mercy that led to his recapture, after which he was burned at the stake near Asperen in the present-day Netherlands Backgro...

 

Studio space at The Renee & Chaim Gross Foundation Renee and Chaim Gross Foundation house in Greenwich Village The Renee and Chaim Gross Foundation is a non-profit organization incorporated in 1989 dedicated to the study of modern American sculptor Chaim Gross (1902–91), his contemporaries, and the history of 20th-century American art. It is located in the sculptor's four-story historic home on LaGuardia Place in Manhattan's Greenwich Village neighborhood and is open to the public. In a...

Piracy in the China Sea Strait of Malacca A US merchant seaman takes aim during training to repel pirates in the Strait of Malacca, 1984. Piracy in the Strait of Malacca has long been a threat to ship owners and the mariners who ply the 900 km-long (550 miles) sea lane. In recent years, coordinated patrols by Indonesia, Malaysia, Thailand, and Singapore along with increased security on vessels have sparked a sharp downturn in piracy. The Strait of Malacca's geography makes the region ver...

 

هذه المقالة بحاجة لصندوق معلومات. فضلًا ساعد في تحسين هذه المقالة بإضافة صندوق معلومات مخصص إليها. يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018) مسجد أ...

 

У этого топонима есть и другие значения, см. Курилово. ДеревняКурилово 56°06′14″ с. ш. 30°59′50″ в. д.HGЯO Страна  Россия Субъект Федерации Псковская область Муниципальный район Куньинский Сельское поселение Куньинская волость История и география Высота центра 162...

Nomadic hunter-gatherer people of North America Calf Creek Insitu Sand Springs Tulsa Calf Creek Culture was a nomadic hunter-gatherer people who lived in the southcentral region of North America, especially in the area of what is today Oklahoma and surrounding states, artifacts having been found in such places as Beard's Bluff, Arkansas and Sand Springs, Oklahoma. The Calf Creek culture was active during the early to middle Archaic period in the Americas, approximately 7,500 to 4,000 years ag...

 

63rd season of the EFL Cup Football tournament season 2022–23 EFL CupWembley Stadium hosted the finalTournament detailsCountryEnglandWalesDates2 August 2022 – 26 February 2023[1]Teams92Defending championsLiverpoolFinal positionsChampionsManchester United (6th title)Runner-upNewcastle UnitedTournament statisticsMatches played93Goals scored241 (2.59 per match)Attendance1,554,555 (16,716 per match)Top goal scorer(s)Marcus Rashford(6 goals)← 2021–22202...