All horses are the same color

All horses are the same color is a falsidical paradox that arises from a flawed use of mathematical induction to prove the statement All horses are the same color.[1] There is no actual contradiction, as these arguments have a crucial flaw that makes them incorrect. This example was originally raised by George Pólya in a 1954 book in different terms: "Are any n numbers equal?" or "Any n girls have eyes of the same color", as an exercise in mathematical induction.[2] It has also been restated as "All cows have the same color".[3]

The "horses" version of the paradox was presented in 1961 in a satirical article by Joel E. Cohen. It was stated as a lemma, which in particular allowed the author to "prove" that Alexander the Great did not exist, and he had an infinite number of limbs.[4]

The argument

All horses are the same color paradox, induction step failing for n = 1

The argument is proof by induction. First, we establish a base case for one horse (). We then prove that if horses have the same color, then horses must also have the same color.

Base case: One horse

The case with just one horse is trivial. If there is only one horse in the "group", then clearly all horses in that group have the same color.

Inductive step

Assume that horses always are the same color. Consider a group consisting of horses.

First, exclude one horse and look only at the other horses; all these are the same color, since horses always are the same color. Likewise, exclude some other horse (not identical to the one first removed) and look only at the other horses. By the same reasoning, these, too, must also be of the same color. Therefore, the first horse that was excluded is of the same color as the non-excluded horses, who in turn are of the same color as the other excluded horse. Hence, the first horse excluded, the non-excluded horses, and the last horse excluded are all of the same color, and we have proven that:

  • If horses have the same color, then horses will also have the same color.

We already saw in the base case that the rule ("all horses have the same color") was valid for . The inductive step proved here implies that since the rule is valid for , it must also be valid for , which in turn implies that the rule is valid for and so on.

Thus, in any group of horses, all horses must be the same color.[2][5]

Explanation

The argument above makes the implicit assumption that the set of horses has the size at least 3,[3] so that the two proper subsets of horses to which the induction assumption is applied would necessarily share a common element. This is not true at the first step of induction, i.e., when .

Two horses standing in a field, one is brown and the other is black.
Two differently colored horses, providing a counterexample to the general theorem.

Let the two horses be horse A and horse B. When horse A is removed, it is true that the remaining horses in the set are the same color (only horse B remains). The same is true when horse B is removed. However, the statement "the first horse that was excluded is of the same color as the non-excluded horses, who in turn are of the same color as the other excluded horse" is meaningless, because there are no "non-excluded horses" (common elements (horses) in the two sets, since each horse is excluded once). Therefore, the above proof has a logical link broken. The proof forms a falsidical paradox; it seems to show by valid reasoning something that is manifestly false, but in fact the reasoning is flawed.

See also

References

  1. ^ Łukowski, Piotr (2011). Paradoxes. Springer. pp. 15.
  2. ^ a b Pólya, George (1954). Induction and Analogy in Mathematics. Princeton University Press. p. 120.
  3. ^ a b Thomas VanDrunen, Discrete Mathematics and Functional Programming, Franklin, Beedle and Associates, 2012, Section "Induction Gone Awry"
  4. ^ Cohen, Joel E. (1961), "On the nature of mathematical proofs", Worm Runner's Digest, III (3). Reprinted in A Random Walk in Science (R. L. Weber, ed.), Crane, Russak & Co., 1973, pp. 34-36
  5. ^ "All Horses are the Same Color". Harvey Mudd College Department of Mathematics. Archived from the original on 12 April 2019. Retrieved 10 November 2023.

Read other articles:

Inger NilssonInger Nilsson dalam Festival Film Internasional Stockholm pada November 2015.LahirKarin Inger Monica Nilsson4 Mei 1959 (umur 64)Kisa, SwediaKebangsaanSwediaPekerjaanAktris, penyanyo, sekretaris medisTahun aktif1969–sekarangDikenal atasPippi Longstocking Karin Inger Monica Nilsson (lahir 4 Mei 1959) adalah seorang aktris dan penyanyi asal Swedia.[1] Ia adalah mantan aktris cilik. Ia dikenal karena memerankan Pippi Longstocking dalam seri TV produksi Swedia ber...

 

Akademi Sahur IndonesiaNama alternatifAkademi Syiar IndonesiaGenre Realitas Pencarian Bakat PembuatTim Programming IndosiarPresenterLihat § Pengisi AcaraJuriLihat § KomentatorNegara asalIndonesiaProduksiRumah produksiTim Produksi IndosiarRilis asliJaringanIndosiarRilis10 Juli 2013 (2013-07-10) –sekarang Akademi Sahur Indonesia atau disingkat AKSI adalah sebuah acara realitas dan pencarian bakat yang ditayangkan di Indosiar setiap Sahur selama bulan Ramadhan. AKSI merupakan prog...

 

100 sons of King Dhritarashtra and Gandhari in the epic Mahabharata Kaurava is a Sanskrit term which refers to descendants of Kuru, a legendary king of India who is the ancestor of many of the characters of the epic Mahabharata. Usually, the term is used for the 100 sons of King Dhritarashtra and his wife Gandhari. Duryodhana, Dushasana, Vikarna and Chitrasena are the most popular among the brothers. They also had a sister named Dussala and a half-brother named Yuyutsu. Kaurava army (left) fa...

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (يوليو 2019) هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسي...

 

Questa voce sull'argomento stagioni delle società calcistiche serbe è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Voce principale: Fudbalski klub Crvena zvezda. Fk Crvena zvezdaStagione 2007-2008Sport calcio Squadra Stella Rossa SuperLiga2° Coppa di SerbiaSemifinalista Champions League3º turno preliminare Coppa UEFAFase a gironi 2006-2007 2008-2009 Si invita a seguire il modello di voce Questa voce raccoglie le informazioni riguardanti il Fu...

 

World Politics  Singkatan (ISO)World Polit.Disiplin ilmuIlmu politik, hubungan internasionalBahasaInggrisDisunting olehDeborah J. YasharDetail publikasiPenerbitCambridge University Press atas nama Princeton Institute for International and Regional AffairsSejarah penerbitan1948-sekarangFrekuensiTriwulanFaktor dampak2,308 (2012)PengindeksanISSN0043-8871LCCN50003829OCLC33895557 Pranala Journal homepage Akses daring Arsip daring Halaman jurnal di situs penerbit World Politics adalah jur...

2009 single by Sway DaSafo featuring AkonSilver & GoldSingle by Sway DaSafo featuring Akonfrom the album The Signature LP Released15 February 2009Recorded2008GenreHip-Hop/RapLength4:12LabelDcypha ProductionsSway DaSafo singles chronology Saturday Night Hustle (2008) Silver & Gold (2009) Mercedes Benz (2009) Akon singles chronology Stuck with Each Other(2009) Silver & Gold(2009) One(2009) Silver & Gold' is a single released by Ghanaian British musician Sway from his se...

 

British philosopher, born 1948 Graham PriestPriest in 2017Born1948 (age 75–76)LondonEducationSt John's College, Cambridge(BA, MA)LSE(MSc, PhD)University of Melbourne(DLitt)EraContemporary philosophyRegionWestern philosophySchoolAnalytic philosophyDialetheismNoneism[1]Doctoral advisorJohn Lane BellMain interestsLogic, metaphysics, history of philosophy,[2] intercultural philosophyNotable ideasDialetheismThe other worlds strategy Graham Priest (born 1948) is a philoso...

 

1930 novel by W. Somerset Maugham Cakes and Ale, or, The Skeleton in the Cupboard Cover of the first UK editionAuthorW. Somerset MaughamCountryUnited KingdomLanguageEnglishGenreNovelPublisherWilliam Heinemann Ltd. (UK); Garden City Publishing Company, Inc. (US)Publication date1930Media typePrint (hardback)Pages308 Cakes and Ale, or, The Skeleton in the Cupboard (1930) is a novel by the British author W. Somerset Maugham. Maugham exposes the misguided social snobbery levelled at the chara...

Wanted - Scegli il tuo destinoJames McAvoy e Angelina Jolie in una scena del filmTitolo originaleWanted Lingua originaleinglese Paese di produzioneStati Uniti d'America Anno2008 Durata110 minuti Rapporto2,35:1 Genereazione, thriller, fantastico RegiaTimur Bekmambetov SoggettoMark Millar, J.G. Jones (fumetto), Michael Brandt, Derek Haas SceneggiaturaMichael Brandt, Derek Haas, Chris Morgan ProduttoreMarc Platt, Jim Lemley, Jason Netter, Iain Smith Produttore esecutivoAdam Siegel, Marc ...

 

SMP Negeri 25 SurabayaInformasiRentang kelasVII, VIII, IXKurikulumKurikulum Tingkat Satuan PendidikanAlamatLokasiJl. Simomulyo No 25, Surabaya, Jawa TimurSitus webhttps://smpn25surabaya.blogspot.comMoto SMP Negeri (SMPN) 25 Surabaya, merupakan salah satu Sekolah Menengah Pertama Negeri yang ada di Provinsi Jawa Timur, Indonesia. Sama dengan SMP pada umumnya di Indonesia masa pendidikan sekolah di SMPN 25 Surabaya ditempuh dalam waktu tiga tahun pelajaran, mulai dari Kelas VII sampai Kela...

 

SMA Negeri 21 BandungInformasiDidirikan1986JenisSekolah NegeriAkreditasiA[1]Nomor Statistik Sekolah301026006140Nomor Pokok Sekolah Nasional20219251Kepala SekolahDani Wardani, S.Pd., M.M.Pd.Jurusan atau peminatanKurikulum Merdeka MIPA IPSRentang kelasX, XI, XIIKurikulumKurikulum Merdeka, Kurikulum 2013AlamatLokasiJl.Manjahlega No. 29, Bandung, Jawa Barat,  IndonesiaTel./Faks.022-7565909Situs webhttp://[email protected] SMA Negeri (SMA...

Advertising billboard in Sydney This article is about the billboard in Sydney, Australia. For the billboard in Times Square, New York City, see Coca-Cola sign. The Coca-Cola Billboard in Kings Cross, Sydney, usually referred to by Sydneysiders simply as The Coca-Cola Sign or The Coke Sign, is an advertising billboard erected in 1974 by the Coca-Cola Company. It is more often regarded as an iconic landmark than as an advertisement. Commercially, it is considered to be the premier billboard in ...

 

Overview of and topical guide to the metric system The metric system is for all people for all time. (Condorcet 1791) Four objects used in making measurements in everyday situations that have metric calibrations are shown: a tape measure calibrated in centimetres, a thermometer calibrated in degrees Celsius, a kilogram mass, and an electrical multimeter which measures volts, amps and ohms. The following outline is provided as an overview of and topical guide to the metric system: Metric syste...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Maret 2023. Amy YamazakiLahir1991PekerjaanPemeranTahun aktif2001–2012 Amy Yamazaki adalah seorang pemeran berkebangsaan Britania Raya. Ia dikenal karena perannya sebagai Charlotte Lau dalam sinetron long-running Channel 4 Hollyoaks.[1] Referensi ^ Onl...

Lihat pula: Brahma (Buddhisme)Patung Brahma Catur Muka (Phra Phrom) di Kuil Erawan, Bangkok Brahma Empat Wajah atau Brahma Catur Muka, dikenal sebagai Phra Phrom (Thai: พระพรหมcode: th is deprecated ; Vara Brahma) di Thailand, adalah representasi dewa Brahma dalam Hinduisme atau makhluk brahma dalam Buddhisme.[1] Budaya Thailand memujanya sebagai sosok keberuntungan dan perlindungan. Meskipun sering secara keliru disebut sebagai Buddha Empat Wajah atau Buddha Catur Muka,...

 

Behavior performed by weakly electric fish to prevent jamming of their sense of electroreception Two neighboring Eigenmannia perform the jamming avoidance response: When two fish with around the same frequency meet, one fish shifts its frequency upward and the other shifts its frequency downward. The jamming avoidance response is a behavior of some species of weakly electric fish. It occurs when two electric fish with wave discharges meet – if their discharge frequencies are very similar, ...

 

Protein-coding gene in the species Homo sapiens NTSR1Available structuresPDBOrtholog search: PDBe RCSB List of PDB id codes2LYWIdentifiersAliasesNTSR1, NTR, Neurotensin receptor 1, neurotensin receptor 1 (high affinity), NTR1External IDsOMIM: 162651; MGI: 97386; HomoloGene: 68261; GeneCards: NTSR1; OMA:NTSR1 - orthologsGene location (Human)Chr.Chromosome 20 (human)[1]Band20q13.33Start62,708,836 bp[1]End62,762,771 bp[1]Gene location (Mouse)Chr.Chromosome 2 (mouse)[2...

For other uses, see Sayn (disambiguation). County of SaynGrafschaft Sayn11th century–1605 Coat of arms Sayn c. 1450StatusState of the Holy Roman EmpireCapitalSayn (in German)GovernmentPrincipalityHistorical eraMiddle Ages• Established before 1139 11th century• To Counts of Sponheim 1247• Partitioned into S-Sayn    and S-Vallendar  1294• Partitioned into S-Sayn,     S-Berleburg and     S-Wittgenstein...

 

German centenarian Franz KünstlerBorn(1900-07-24)24 July 1900Sósd, Transleithania, Austria-HungaryDied27 May 2008(2008-05-27) (aged 107)Bad Mergentheim, Baden-Württemberg, GermanyAllegiance Austria-Hungary HungaryYears of serviceFebruary 1918–1921,1942UnitMounted Artillery RegimentBattles/warsWorld War IWorld War IIOther workMuseum guide Franz Künstler (Hungarian: Künstler Ferenc, 24 July 1900 – 27 May 2008) was, at age 107, the last known surviving veteran of the Firs...