Alfvén wave

A cluster of double layers forming in an Alfvén wave, about a sixth of the distance from the left. Red = electrons, Green = ions, Yellow = electric potential, Orange = parallel electric field, Pink = charge density, Blue = magnetic field
Kinetic Alfvén wave

In plasma physics, an Alfvén wave, named after Hannes Alfvén, is a type of plasma wave in which ions oscillate in response to a restoring force provided by an effective tension on the magnetic field lines.[1]

Definition

An Alfvén wave is a low-frequency (compared to the ion gyrofrequency) travelling oscillation of the ions and magnetic field in a plasma. The ion mass density provides the inertia and the magnetic field line tension provides the restoring force. Alfvén waves propagate in the direction of the magnetic field, and the motion of the ions and the perturbation of the magnetic field are transverse to the direction of propagation. However, Alfvén waves existing at oblique incidences will smoothly change into magnetosonic waves when the propagation is perpendicular to the magnetic field.

Alfvén waves are dispersionless.

Alfvén velocity

The low-frequency relative permittivity of a magnetized plasma is given by[2] where B is the magnetic flux density, is the speed of light, is the permeability of the vacuum, and the mass density is the sum over all species of charged plasma particles (electrons as well as all types of ions). Here species has number density and mass per particle .

The phase velocity of an electromagnetic wave in such a medium is For the case of an Alfvén wave where is the Alfvén wave group velocity. (The formula for the phase velocity assumes that the plasma particles are moving at non-relativistic speeds, the mass-weighted particle velocity is zero in the frame of reference, and the wave is propagating parallel to the magnetic field vector.)

If , then . On the other hand, when , . That is, at high field or low density, the group velocity of the Alfvén wave approaches the speed of light, and the Alfvén wave becomes an ordinary electromagnetic wave.

Neglecting the contribution of the electrons to the mass density, , where is the ion number density and is the mean ion mass per particle, so that

Alfvén time

In plasma physics, the Alfvén time is an important timescale for wave phenomena. It is related to the Alfvén velocity by: where denotes the characteristic scale of the system. For example, could be the minor radius of the torus in a tokamak.

Relativistic case

The Alfvén wave velocity in relativistic magnetohydrodynamics is[3] where e is the total energy density of plasma particles, is the total plasma pressure, and is the magnetic pressure. In the non-relativistic limit, where , this formula reduces to the one given previously.

History

Magnetic waves, called Alfvén S-waves, flow from the base of black hole jets.

The coronal heating problem

The study of Alfvén waves began from the coronal heating problem, a longstanding question in heliophysics. It was unclear why the temperature of the solar corona is hot (about one million kelvins) compared to its surface (the photosphere), which is only a few thousand kelvins. Intuitively, it would make sense to see a decrease in temperature when moving away from a heat source, but this does not seem to be the case even though the photosphere is denser and would generate more heat than the corona.

In 1942, Hannes Alfvén proposed in Nature the existence of an electromagnetic-hydrodynamic wave which would carry energy from the photosphere to heat up the corona and the solar wind. He claimed that the sun had all the necessary criteria to support these waves and they may in turn be responsible for sun spots. He stated:

If a conducting liquid is placed in a constant magnetic field, every motion of the liquid gives rise to an E.M.F. which produces electric currents. Owing to the magnetic field, these currents give mechanical forces which change the state of motion of the liquid. Thus a kind of combined electromagnetic–hydrodynamic wave is produced.[4]

This would eventually turn out to be Alfvén waves. He received the 1970 Nobel Prize in Physics for this discovery.

Experimental studies and observations

The convection zone of the Sun, the region beneath the photosphere in which energy is transported primarily by convection, is sensitive to the motion of the core due to the rotation of the Sun. Together with varying pressure gradients beneath the surface, electromagnetic fluctuations produced in the convection zone induce random motion on the photospheric surface and produce Alfvén waves. The waves then leave the surface, travel through the chromosphere and transition zone, and interact with the ionized plasma. The wave itself carries energy and some of the electrically charged plasma.

In the early 1990s, de Pontieu[5] and Haerendel[6] suggested that Alfvén waves may also be associated with the plasma jets known as spicules. It was theorized these brief spurts of superheated gas were carried by the combined energy and momentum of their own upward velocity, as well as the oscillating transverse motion of the Alfvén waves.

In 2007, Alfvén waves were reportedly observed for the first time traveling towards the corona by Tomczyk et al., but their predictions could not conclude that the energy carried by the Alfvén waves was sufficient to heat the corona to its enormous temperatures, for the observed amplitudes of the waves were not high enough.[7] However, in 2011, McIntosh et al. reported the observation of highly energetic Alfvén waves combined with energetic spicules which could sustain heating the corona to its million-kelvin temperature. These observed amplitudes (20.0 km/s against 2007's observed 0.5 km/s) contained over one hundred times more energy than the ones observed in 2007.[8] The short period of the waves also allowed more energy transfer into the coronal atmosphere. The 50,000 km-long spicules may also play a part in accelerating the solar wind past the corona.[9] Alfvén waves are routinely observed in solar wind, in particular in fast solar wind streams. The role of Alfvénic oscillations in the interaction between fast solar wind and the Earth's magnetosphere is currently under debate.[10][11]

However, the above-mentioned discoveries of Alfvén waves in the complex Sun's atmosphere, starting from the Hinode era in 2007 for the next 10 years, mostly fall in the realm of Alfvénic waves essentially generated as a mixed mode due to transverse structuring of the magnetic and plasma properties in the localized flux tubes. In 2009, Jess et al.[12] reported the periodic variation of H-alpha line-width as observed by Swedish Solar Telescope (SST) above chromospheric bright-points. They claimed first direct detection of the long-period (126–700 s), incompressible, torsional Alfvén waves in the lower solar atmosphere.

After the seminal work of Jess et al. (2009), in 2017 Srivastava et al.[13] detected the existence of high-frequency torsional Alfvén waves in the Sun's chromospheric fine-structured flux tubes. They discovered that these high-frequency waves carry substantial energy capable of heating the Sun's corona and also originating the supersonic solar wind. In 2018, using spectral imaging observations, non-LTE (local thermodynamic equilibrium) inversions and magnetic field extrapolations of sunspot atmospheres, Grant et al.[14] found evidence for elliptically polarized Alfvén waves forming fast-mode shocks in the outer regions of the chromospheric umbral atmosphere. They provided quantification of the degree of physical heat provided by the dissipation of such Alfvén wave modes above active region spots.

In 2024, a paper was published in the journal Science detailing a set of observations of what turned out to be the same jet of solar wind made by Parker Solar Probe and Solar Orbiter in February 2022, and implying Alfvén waves were what kept the jet's energy high enough to match the observations.[15]

Historical timeline

  • 1942: Alfvén suggests the existence of electromagnetic-hydromagnetic waves in a paper published in Nature 150, 405–406 (1942).
  • 1949: Laboratory experiments by S. Lundquist produce such waves in magnetized mercury, with a velocity that approximated Alfvén's formula.
  • 1949: Enrico Fermi uses Alfvén waves in his theory of cosmic rays.
  • 1950: Alfvén publishes the first edition of his book, Cosmical Electrodynamics, detailing hydromagnetic waves, and discussing their application to both laboratory and space plasmas.
  • 1952: Additional confirmation appears in experiments by Winston Bostick and Morton Levine with ionized helium.
  • 1954: Bo Lehnert produces Alfvén waves in liquid sodium.[16]
  • 1958: Eugene Parker suggests hydromagnetic waves in the interstellar medium.
  • 1958: Berthold, Harris, and Hope detect Alfvén waves in the ionosphere after the Argus nuclear test, generated by the explosion, and traveling at speeds predicted by Alfvén formula.
  • 1958: Eugene Parker suggests hydromagnetic waves in the Solar corona extending into the Solar wind.
  • 1959: D. F. Jephcott produces Alfvén waves in a gas discharge.[17]
  • 1959: C. H. Kelley and J. Yenser produce Alfvén waves in the ambient atmosphere.
  • 1960: Coleman et al. report the measurement of Alfvén waves by the magnetometer aboard the Pioneer and Explorer satellites.[18]
  • 1961: Sugiura suggests evidence of hydromagnetic waves in the Earth's magnetic field.[19]
  • 1961: Normal Alfvén modes and resonances in liquid sodium are studied by Jameson.
  • 1966: R. O. Motz generates and observes Alfvén waves in mercury.[20]
  • 1970: Hannes Alfvén wins the 1970 Nobel Prize in Physics for "fundamental work and discoveries in magneto-hydrodynamics with fruitful applications in different parts of plasma physics".
  • 1973: Eugene Parker suggests hydromagnetic waves in the intergalactic medium.
  • 1974: J. V. Hollweg suggests the existence of hydromagnetic waves in interplanetary space.[21]
  • 1977: Mendis and Ip suggest the existence of hydromagnetic waves in the coma of Comet Kohoutek.[22]
  • 1984: Roberts et al. predict the presence of standing MHD waves in the solar corona[23] and opens the field of coronal seismology.
  • 1999: Aschwanden et al.[24] and Nakariakov et al. report the detection of damped transverse oscillations of solar coronal loops observed with the extreme ultraviolet (EUV) imager on board the Transition Region And Coronal Explorer (TRACE), interpreted as standing kink (or "Alfvénic") oscillations of the loops. This confirms the theoretical prediction of Roberts et al. (1984).
  • 2007: Tomczyk et al. reported the detection of Alfvénic waves in images of the solar corona with the Coronal Multi-Channel Polarimeter (CoMP) instrument at the National Solar Observatory, New Mexico.[25] However, these observations turned out to be kink waves of coronal plasma structures.[26]doi:10.1051/0004-6361/200911840
  • 2007: A special issue on the Hinode space observatory was released in the journal Science.[27] Alfvén wave signatures in the coronal atmosphere were observed by Cirtain et al.,[28] Okamoto et al.,[29] and De Pontieu et al.[30] By estimating the observed waves' energy density, De Pontieu et al. have shown that the energy associated with the waves is sufficient to heat the corona and accelerate the solar wind.
  • 2008: Kaghashvili et al. uses driven wave fluctuations as a diagnostic tool to detect Alfvén waves in the solar corona.[31]
  • 2009: Jess et al. detect torsional Alfvén waves in the structured Sun's chromosphere using the Swedish Solar Telescope.[12]
  • 2011: Alfvén waves are shown to propagate in a liquid metal alloy made of Gallium.[32]
  • 2017: 3D numerical modelling performed by Srivastava et al. show that the high-frequency (12–42 mHz) Alfvén waves detected by the Swedish Solar Telescope can carry substantial energy to heat the Sun's inner corona.[13]
  • 2018: Using spectral imaging observations, non-LTE inversions and magnetic field extrapolations of sunspot atmospheres, Grant et al. found evidence for elliptically polarized Alfvén waves forming fast-mode shocks in the outer regions of the chromospheric umbral atmosphere. For the first time, these authors provided quantification of the degree of physical heat provided by the dissipation of such Alfvén wave modes.[14]
  • 2024: Alfvén waves are implied to be behind a smaller than expected energy loss in solar wind jets out as far as Venus' orbit, based on Parker Solar Probe and Solar Orbiter observations only two days apart.[15]

See also

References

  1. ^ Iwai, K; Shinya, K,; Takashi, K. and Moreau, R. (2003) "Pressure change accompanying Alfvén waves in a liquid metal" Magnetohydrodynamics 39(3): pp. 245-250, page 245
  2. ^ Chen, F.F. (2016). Introduction to Plasma Physics and Controlled Fusion (3rd ed.). Switzerland: Springer International Publishing. pp. 55, 126–131.
  3. ^ Gedalin, M. (1993). "Linear waves in relativistic anisotropic magnetohydrodynamics". Physical Review E. 47 (6): 4354–4357. Bibcode:1993PhRvE..47.4354G. doi:10.1103/PhysRevE.47.4354. PMID 9960513.
  4. ^ Alfvén, Hannes (1942). "Existence of electromagnetic–hydrodynamic waves". Nature. 150 (3805): 405–406. Bibcode:1942Natur.150..405A. doi:10.1038/150405d0. S2CID 4072220.
  5. ^ Bart de Pontieu (18 December 1997). "Chromospheric Spicules driven by Alfvén waves". Max-Planck-Institut für extraterrestrische Physik. Archived from the original on 16 July 2002. Retrieved 1 April 2012.
  6. ^ Gerhard Haerendel (1992). "Weakly damped Alfven waves as drivers of solar chromospheric spicules". Nature. 360 (6401): 241–243. Bibcode:1992Natur.360..241H. doi:10.1038/360241a0. S2CID 44454309.
  7. ^ Tomczyk, S.; McIntosh, S.W.; Keil, S.L.; Judge, P.G.; Schad, T.; Seeley, D.H.; Edmondson, J. (2007). "Alfven waves in the solar corona". Science. 317 (5842): 1192–1196. Bibcode:2007Sci...317.1192T. doi:10.1126/science.1143304. PMID 17761876. S2CID 45840582.
  8. ^ McIntosh; et al. (2011). "Alfvenic waves with sufficient energy to power the quiet solar corona and fast solar wind". Nature. 475 (7357): 477–480. Bibcode:2011Natur.475..477M. doi:10.1038/nature10235. PMID 21796206. S2CID 4336248.
  9. ^ Karen Fox (27 July 2011). "SDO spots extra energy in the Sun's corona". NASA. Retrieved 2 April 2012.
  10. ^ Pokhotelov, D.; Rae, I.J.; Murphy, K.R.; Mann, I.R. (8 June 2015). "The influence of solar wind variability on magnetospheric ULF wave power". Annales Geophysicae. 33 (6): 697–701. doi:10.5194/angeo-33-697-2015.
  11. ^ Borovsky, J.E. (5 January 2023). "Further investigation of the effect of upstream solar-wind fluctuations on solar-wind/magnetosphere coupling: Is the effect real?". Frontiers in Astronomy and Space Sciences. 9: 1–18. doi:10.3389/fspas.2022.975135.
  12. ^ a b Jess, David B.; Mathioudakis, Mihalis; Erdélyi, Robert; Crockett, Philip J.; Keenan, Francis P.; Christian, Damian J. (20 March 2009). "Alfvén Waves in the Lower Solar Atmosphere". Science. 323 (5921): 1582–1585. arXiv:0903.3546. Bibcode:2009Sci...323.1582J. doi:10.1126/science.1168680. hdl:10211.3/172550. ISSN 0036-8075. PMID 19299614. S2CID 14522616.
  13. ^ a b Srivastava, Abhishek Kumar; Shetye, Juie; Murawski, Krzysztof; Doyle, John Gerard; Stangalini, Marco; Scullion, Eamon; Ray, Tom; Wójcik, Dariusz Patryk; Dwivedi, Bhola N. (3 March 2017). "High-frequency torsional Alfvén waves as an energy source for coronal heating". Scientific Reports. 7 (1): 43147. Bibcode:2017NatSR...743147S. doi:10.1038/srep43147. ISSN 2045-2322. PMC 5335648. PMID 28256538.
  14. ^ a b Grant, Samuel D. T.; Jess, David B.; Zaqarashvili, Teimuraz V.; Beck, Christian; Socas-Navarro, Hector; Aschwanden, Markus J.; Keys, Peter H.; Christian, Damian J.; Houston, Scott J.; Hewitt, Rebecca L. (2018), "Alfvén Wave Dissipation in the Solar Chromosphere", Nature Physics, 14 (5): 480–483, arXiv:1810.07712, Bibcode:2018NatPh..14..480G, doi:10.1038/s41567-018-0058-3, S2CID 119089600
  15. ^ a b Rivera, Yeimy J.; Badman, Samuel T.; Stevens, Michael L.; Verniero, Jaye L.; Stawarz, Julia E.; Shi, Chen; Raines, Jim M.; Paulson, Kristoff W.; Owen, Christopher J.; Niembro, Tatiana; Louarn, Philippe; Livi, Stefano A.; Lepri, Susan T.; Kasper, Justin C.; Horbury, Timothy S.; Halekas, Jasper S.; Dewey, Ryan M.; De Marco, Rossana; Bale, Stuart D. (30 August 2024). "In situ observations of large-amplitude Alfvén waves heating and accelerating the solar wind". Science. 385 (6712): 962–966. arXiv:2409.00267. doi:10.1126/science.adk6953. ISSN 0036-8075.
  16. ^ Lehnert, Bo (15 May 1954). "Magneto-Hydrodynamic Waves in Liquid Sodium". Physical Review. 94 (4): 815–824. Bibcode:1954PhRv...94..815L. doi:10.1103/PhysRev.94.815.
  17. ^ JEPHCOTT, D. F. (13 June 1959). "Alfvén Waves in a Gas Discharge". Nature. 183 (4676): 1652–1654. Bibcode:1959Natur.183.1652J. doi:10.1038/1831652a0. ISSN 0028-0836. S2CID 11487078.
  18. ^ Sonett, C. P.; Smith, E. J.; Judge, D. L.; Coleman, P. J. (15 February 1960). "Current Systems in the Vestigial Geomagnetic Field: Explorer VI". Physical Review Letters. 4 (4): 161–163. Bibcode:1960PhRvL...4..161S. doi:10.1103/PhysRevLett.4.161.
  19. ^ Sugiura, Masahisa (December 1961). "Evidence of low-frequency hydromagnetic waves in the exosphere". Journal of Geophysical Research. 66 (12): 4087–4095. Bibcode:1961JGR....66.4087S. doi:10.1029/jz066i012p04087. ISSN 0148-0227.
  20. ^ Motz, Robin O. (1966). "Alfvén Wave Generation in a Spherical System". Physics of Fluids. 9 (2): 411–412. Bibcode:1966PhFl....9..411M. doi:10.1063/1.1761687. ISSN 0031-9171.
  21. ^ Hollweg, J. V. (1974). "Hydromagnetic Waves in Interplanetary Space". Publications of the Astronomical Society of the Pacific. 86 (513): 561. Bibcode:1974PASP...86..561H. doi:10.1086/129646. ISSN 1538-3873.
  22. ^ Mendis, D. A.; Ip, W. -H. (March 1977). "The ionospheres and plasma tails of comets". Space Science Reviews. 20 (2): 145–190. Bibcode:1977SSRv...20..145M. doi:10.1007/bf02186863. ISSN 0038-6308. S2CID 119883598.
  23. ^ Roberts, B.; Edwin, P. M.; Benz, A. O. (1984). "Coronal oscillations". The Astrophysical Journal. 279 (2): 857–865. Bibcode:1984ApJ...279..857R. doi:10.1086/161956. ISSN 0004-637X.
  24. ^ Aschwanden, Markus J.; Fletcher, Lyndsay; Schrijver, Carolus J.; Alexander, David (1999). "Coronal Loop Oscillations Observed with the Transition Region and Coronal Explorer" (PDF). The Astrophysical Journal. 520 (2): 880. Bibcode:1999ApJ...520..880A. doi:10.1086/307502. ISSN 0004-637X. S2CID 122698505.
  25. ^ Tomczyk, S.; McIntosh, S. W.; Keil, S. L.; Judge, P. G.; Schad, T.; Seeley, D. H.; Edmondson, J. (31 August 2007). "Alfvén Waves in the Solar Corona". Science. 317 (5842): 1192–1196. Bibcode:2007Sci...317.1192T. doi:10.1126/science.1143304. ISSN 0036-8075. PMID 17761876. S2CID 45840582.
  26. ^ Doorsselaere, T. Van; Nakariakov, V. M.; Verwichte, E. (2008). "Detection of Waves in the Solar Corona: Kink or Alfvén?". The Astrophysical Journal Letters. 676 (1): L73. Bibcode:2008ApJ...676L..73V. doi:10.1086/587029. ISSN 1538-4357.
  27. ^ "Science: 318 (5856)". Science. 318 (5856). 7 December 2007. ISSN 0036-8075.
  28. ^ Cirtain, J. W.; Golub, L.; Lundquist, L.; Ballegooijen, A. van; Savcheva, A.; Shimojo, M.; DeLuca, E.; Tsuneta, S.; Sakao, T. (7 December 2007). "Evidence for Alfvén Waves in Solar X-ray Jets". Science. 318 (5856): 1580–1582. Bibcode:2007Sci...318.1580C. doi:10.1126/science.1147050. ISSN 0036-8075. PMID 18063786. S2CID 39318753.
  29. ^ Okamoto, T. J.; Tsuneta, S.; Berger, T. E.; Ichimoto, K.; Katsukawa, Y.; Lites, B. W.; Nagata, S.; Shibata, K.; Shimizu, T. (7 December 2007). "Coronal Transverse Magnetohydrodynamic Waves in a Solar Prominence". Science. 318 (5856): 1577–1580. arXiv:0801.1958. Bibcode:2007Sci...318.1577O. doi:10.1126/science.1145447. ISSN 0036-8075. PMID 18063785. S2CID 121422620.
  30. ^ Pontieu, B. De; McIntosh, S. W.; Carlsson, M.; Hansteen, V. H.; Tarbell, T. D.; Schrijver, C. J.; Title, A. M.; Shine, R. A.; Tsuneta, S. (7 December 2007). "Chromospheric Alfvénic Waves Strong Enough to Power the Solar Wind". Science. 318 (5856): 1574–1577. Bibcode:2007Sci...318.1574D. doi:10.1126/science.1151747. ISSN 0036-8075. PMID 18063784. S2CID 33655095.
  31. ^ Kaghashvili, Edisher Kh.; Quinn, Richard A.; Hollweg, Joseph V. (2009). "Driven Waves as a Diagnostics Tool in the Solar Corona". The Astrophysical Journal. 703 (2): 1318. Bibcode:2009ApJ...703.1318K. doi:10.1088/0004-637x/703/2/1318. S2CID 120848530.
  32. ^ Thierry Alboussière; Philippe Cardin; François Debray; Patrick La Rizza; Jean-Paul Masson; Franck Plunian; Adolfo Ribeiro; Denys Schmitt (2011). "Experimental evidence of Alfvén wave propagation in a Gallium alloy". Phys. Fluids. 23 (9): 096601. arXiv:1106.4727. Bibcode:2011PhFl...23i6601A. doi:10.1063/1.3633090. S2CID 2234120.

Further reading

Read other articles:

Velodrome Anna MearesVelodrome ChandlerLokasiBrisbane, Queensland, AustraliaKoordinat6°11′28″S 106°53′25″E / 6.191085°S 106.890227°E / -6.191085; 106.890227Koordinat: 6°11′28″S 106°53′25″E / 6.191085°S 106.890227°E / -6.191085; 106.890227Kapasitas3,500Ukuran lapanganTrek 250 m (270 yd)PermukaanKayuKonstruksiDirenovasi2016 Velodrome Anna Meares adalah Velodrome dalam ruangan di Pusat Sleeman, Chandler, Queensland...

 

Artikel ini memiliki beberapa masalah. Tolong bantu memperbaikinya atau diskusikan masalah-masalah ini di halaman pembicaraannya. (Pelajari bagaimana dan kapan saat yang tepat untuk menghapus templat pesan ini) Artikel atau bagian mungkin perlu ditulis ulang agar sesuai dengan standar kualitas Wikipedia. Anda dapat membantu memperbaikinya. Halaman pembicaraan dari artikel ini mungkin berisi beberapa saran. Artikel ini tidak memiliki bagian pembuka yang sesuai dengan standar Wikipedia. Mohon t...

 

Replika claymore. Artikel ini berisi tentang Claymore pedang, untuk Claymore manga lihat Claymore (manga). Claymore adalah nama yang diberikan untuk sebuah pedang dua-tangan asal Skotlandia, claymore merupakan sebuah pedang dua tangan atau yang biasa disebut dengan two handed sword biasa dipakai oleh orang zaman dahulu untuk perang. (Ages of Empire) Etimologi Perkataan atau nama claymore dipercayai berasal dari kata claidheamh mòr-sebuah istilah bahasa Gaelic yang bermaksud pedang besar. Nam...

Practice of eating animals that are still alive Live octopus that has been cut into small pieces and served, a popular delicacy in South Korea. Youtube video of the preparation and eating of sannakji Eating live animals is the practice of humans eating animals that are still alive. It is a traditional practice in many East Asian food cultures. Animals may also be eaten alive for shock value. Eating live animals, or parts of live animals, may be unlawful in certain jurisdictions under animal c...

 

Place in Borsod-Abaúj-Zemplén, HungaryNagyhuta FlagCoat of armsNagyhutaLocation of NagyhutaCoordinates: 48°25′42″N 21°29′37″E / 48.42823°N 21.49350°E / 48.42823; 21.49350Country HungaryCountyBorsod-Abaúj-ZemplénArea • Total35.05 km2 (13.53 sq mi)Population (2004) • Total83 • Density2.36/km2 (6.1/sq mi)Time zoneUTC+1 (CET) • Summer (DST)UTC+2 (CEST)Postal code3994Area code47 Na...

 

American high jumper Pam Spencer Medal record Women’s Athletics Representing the  United States Pan American Games 1979 San Juan High Jump Pamela Ann Spencer-Marquez (born October 8, 1957) is a retired high jumper from the United States, who set her personal best on 1981-08-28, jumping 1.97 metres at a meet in Brussels, Belgium. She competed for her native country at the 1984 Summer Olympics in Los Angeles, California, finishing in eleventh place (1.85 metres). Spencer grew up in Great...

Voce principale: Campionati mondiali di triathlon. Campionati del mondo di triathlon del 2019 Competizione Campionati del mondo di triathlon Sport Triathlon Edizione 31° Organizzatore ITU - International Triathlon Union Date 16 settembre 2019 Luogo  Svizzera, Losanna Sito web Sito ufficiale Risultati Vincitore Vincent Luis Katie Zaferes Cronologia della competizione 2018 2020 Manuale I campionati del mondo di triathlon del 2019 sono consistiti in una serie di otto competizioni individu...

 

Risque sismiquedans le Lot Géographie Pays France Région Occitanie Département Lot Zonage sismique 1-très faible 313 communes modifier  Le risque sismique dans le Lot est un des risques majeurs susceptibles d'affecter le département du Lot (région Occitanie, France). Il se caractérise par la possibilité qu'un aléa de type séisme se produise et occasionne des dommages plus ou moins importants aux enjeux humains, économiques ou environnementaux situés sur le territoire départ...

 

تحتاج هذه المقالة إلى الاستشهاد بمصادر إضافية لتحسين وثوقيتها. فضلاً ساهم في تطوير هذه المقالة بإضافة استشهادات من مصادر موثوق بها. من الممكن التشكيك بالمعلومات غير المنسوبة إلى مصدر وإزالتها. (ديسمبر 2022)   لمعانٍ أخرى، طالع ائتلاف (توضيح). الائتلاف أو التحالف[1] (ب�...

American singer and jazz pianist (1919–1965) Nat King ColeCole in 1959BornNathaniel Adams Coles(1919-03-17)March 17, 1919Montgomery, Alabama, U.S.DiedFebruary 15, 1965(1965-02-15) (aged 45)Santa Monica, California, U.S.OccupationsSingerpianistactorYears active1934–1965Spouses Nadine Robinson ​ ​(m. 1937; div. 1948)​ Maria Hawkings ​(m. 1948)​Children5, including Natalie and CaroleMusical careerGenresJaz...

 

Polynesian ethnic group from the Cook Islands For the language of the Cook Islands, see Cook Islands. Ethnic group Cook IslandersTotal population~ unknown worldwideRegions with significant populations New Zealand80,532 (2018)[1] Australia22,000 (2016)[2] Cook Islands17,459 (2016)[3]LanguagesEnglish (86.4%)Cook Islands Māori (76.2%)PenrhynRakahanga-ManihikiPukapukanRelated ethnic groupsPolynesiansMāoriTahitians Location of the Cook Islands. Cook Islande...

 

Questa voce sull'argomento giochi olimpici è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Indonesia ai Giochi della XXVI OlimpiadeAtlanta 1996 Codice CIOINA Comitato nazionaleComitato Sportivo Nazionale Indonesiano Atleti partecipanti40 in 11 discipline Di cui uomini/donne23 - 17 PortabandieraHendrik Simangunsong Medagliere Posizione 41ª 1 1 2 4 Cronologia olimpica (sommario)Giochi oli...

Elections in Puerto Rico General elections 1948 1952 1956 1960 1964 1968 1972 1976 1980 1984 1988 1992 1996 2000 2004 2008 2012 2016 2020 2024 Referendums 1951 Mar 1952 Nov 1952 1960 1961 1964 1967 1970 1991 1993 1994 1998 2005 2012 (Aug) 2012 (Nov) 2017 2020 2024 Shadow Congresspeople 2021 2025 Gubernatorial 2000 2004 2008 2012 2016 2020 2024 Resident Commissioner 2000 2004 2008 2012 2016 2020 2024 Senate 2004 2008 2012 2016 2020 2024 House of Representatives 2004 2008 2012 2016 2020 2024 M...

 

German theologian and author (1927–2021) Uta Ranke-HeinemannBorn(1927-10-02)2 October 1927Essen, GermanyDied25 March 2021(2021-03-25) (aged 93)Essen, GermanyEducation Burggymnasium Essen University of Bonn University of Basel University of Oxford University of Montpellier OccupationTheologianOrganizations University of Duisburg-Essen Notable workEunuchs for the Kingdom of HeavenSpouseEdmund RankeChildrenJohannes Ranke-HeinemannParentGustav Heinemann (father)RelativesChristina Rau (niec...

 

Burmese queen consort (1863–1912) SupayalayMibaya NgePrincess of YamethinTenure1863 – 1878SuccessordisestablishedBornHteik Supayalay1863 (1863)MandalayDied25 June 1912 (1912-06-26) (aged 48)Ratnagiri, British IndiaSpouseThibaw MinRegnal nameသီရိသုပဘာရတနာဒေဝီHouseKonbaungFatherMindon MinMotherHsinbyumashin Supayalay (Burmese: စုဖုရားလေး; 1863 – 25 June 1912) was a junior queen consort of the Konbaung dynasty, and was ma...

Cet article est une ébauche concernant le Concours Eurovision de la chanson et la Belgique. Vous pouvez partager vos connaissances en l’améliorant (comment ?) ; pour plus d’indications, visitez le projet Eurovision. Belgiqueau Concours Eurovision 2010 Données clés Pays  Belgique Chanson Me And My Guitar Interprète Tom Dice Compositeur Tom Dice, Jeroen Swinnen & Ashley Hicklin Parolier Tom Dice, Jeroen Swinnen & Ashley Hicklin Langue Anglais Sélection national...

 

Cet article est une ébauche concernant l’art et une chronologie ou une date. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Chronologies Données clés 1441 1442 1443  1444  1445 1446 1447Décennies :1410 1420 1430  1440  1450 1460 1470Siècles :XIIIe XIVe  XVe  XVIe XVIIeMillénaires :-Ier Ier  IIe  IIIe Chronologies thématiques Art Arts plastiques (De...

 

بلدة ألكونا الإحداثيات 44°47′04″N 83°26′35″W / 44.7844°N 83.4431°W / 44.7844; -83.4431   [1] تقسيم إداري  البلد الولايات المتحدة  التقسيم الأعلى مقاطعة ألكونا  خصائص جغرافية  المساحة 171.9 كيلومتر مربع  ارتفاع 243 متر  عدد السكان  عدد السكان 966 (1 أبريل 2020)[2]...

San Lucacomune San Luca – Veduta LocalizzazioneStato Italia Regione Calabria Città metropolitana Reggio Calabria AmministrazioneAmministratore localeRosario Fusaro (Commissario prefettizio) dall'11-6-2024 Data di istituzione19 dicembre 1807 TerritorioCoordinate38°09′N 16°04′E38°09′N, 16°04′E (San Luca) Altitudine250 m s.l.m. Superficie105,35 km² Abitanti3 417[1] (30-6-2023) Densità32,43 ab./km² FrazioniIentile, Polsi, Riccio...

 

Robert FarahRobert Farah nel 2019Nazionalità Colombia Altezza193 cm Peso89 kg Tennis SpecialitàDoppio Termine carriera15 settembre 2023 Carriera Singolare1 Vittorie/sconfitte 4-9 (30.77%) Titoli vinti 0 Miglior ranking 163º (6 giugno 2011) Risultati nei tornei del Grande Slam  Australian Open Q2 (2011)  Roland Garros Q2 (2011, 2012)  Wimbledon Q2 (2011, 2012)  US Open 1T (2011) Doppio1 Vittorie/sconfitte 354-223 (61.35%) Titoli vinti 19 Miglior ranking 1º (15 lugl...