Albert Seward
|
Read other articles:
Gunung PandanTitik tertinggiKetinggian897 m (2.943 kaki)GeografiLetakKabupaten Bojonegoro, Jawa Timur, IndonesiaKabupaten Madiun, Jawa Timur, IndonesiaGeologiJenis gunungGunung berapi kerucut Gunung Pandan (903 m) adalah sebuah gunung berapi kerucut yang terletak di Pulau Jawa, Indonesia, tepatnya di selatan Kabupaten Bojonegoro, utara Kabupaten Madiun dan Kabupaten Nganjuk, Jawa Timur. Status gunung ini adalah gunung api (istirahat) dan telah lama tidak aktif. Gunung ini merupakan puncak ter...
Biografi ini memerlukan lebih banyak catatan kaki untuk pemastian. Bantulah untuk menambahkan referensi atau sumber tepercaya. Materi kontroversial atau trivial yang sumbernya tidak memadai atau tidak bisa dipercaya harus segera dihapus, khususnya jika berpotensi memfitnah.Cari sumber: M. Irfan Ramli – berita · surat kabar · buku · cendekiawan · JSTOR (Desember 2022) (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Mohammad Irfan Ram...
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Advanced Technology Program – news · newspapers · books · scholar · JSTOR (January 2015) (Learn how and when to remove this template message) The NIST Advanced Technology Program (ATP, or NIST ATP) is a United States government (U.S. Department of Commerce, Nat...
Ikan Pelangi Sentani Status konservasi Kritis (IUCN 2.3) Klasifikasi ilmiah Kerajaan: Animalia Filum: Chordata Kelas: Actinopterygii Ordo: Atheriniformes Famili: Melanotaeniidae Genus: Chilatherina Spesies: C. sentaniensis Nama binomial Chilatherina sentaniensis(M. C. W. Weber, 1907) Ikan Pelangi Sentani (Chilatherina sentaniensis) merupakan spesies ikan keluarga Melanotaeniidae yang terancam punah. Merupakan Endemik dari Papua Barat, Indonesia, hanya ada di Danau Sentani (10 ...
هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يونيو 2018) رباني غلام معلومات شخصية الميلاد 8 أكتوبر 1951 (73 سنة) الجنسية أفغانستان الحياة العملية المهنة ملاكم نوع الرياضة الملاكمة تعديل مصدري - تعديل ر...
2014 single by Bebe Rexha I'm Gonna Show You CrazySingle by Bebe Rexhafrom the EP I Don't Wanna Grow Up ReleasedDecember 19, 2014GenrePopLength3:27LabelWarner Bros.Songwriter(s) Bebe Rexha Jon Levine Lauren Christy Producer(s)Jon LevineBebe Rexha singles chronology I Can't Stop Drinking About You (2014) I'm Gonna Show You Crazy (2014) Gone (2014) Music videoI'm Gonna Show You Crazy on YouTube I'm Gonna Show You Crazy is a song by American singer and songwriter Bebe Rexha from her debut e...
Argentine association football player This article's lead section may be too short to adequately summarize the key points. Please consider expanding the lead to provide an accessible overview of all important aspects of the article. (August 2021) Nicolás Tagliafico Tagliafico with Argentina at the 2018 FIFA World CupPersonal informationFull name Nicolás Alejandro Tagliafico[1]Date of birth (1992-08-31) 31 August 1992 (age 31)[1]Place of birth Rafael Calzada, Buenos Aire...
Given non-uniformly sampled data points on a toroidal helix (top), the first two Diffusion Map coordinates with Laplace–Beltrami normalization are plotted (bottom). The Diffusion Map unravels the toroidal helix recovering the underlying intrinsic circular geometry of the data. Diffusion maps is a dimensionality reduction or feature extraction algorithm introduced by Coifman and Lafon[1][2][3][4] which computes a family of embeddings of a data set into Euclide...
此條目可参照英語維基百科相應條目来扩充。 (2021年5月6日)若您熟悉来源语言和主题,请协助参考外语维基百科扩充条目。请勿直接提交机械翻译,也不要翻译不可靠、低品质内容。依版权协议,译文需在编辑摘要注明来源,或于讨论页顶部标记{{Translated page}}标签。 约翰斯顿环礁Kalama Atoll 美國本土外小島嶼 Johnston Atoll 旗幟颂歌:《星條旗》The Star-Spangled Banner約翰斯頓環礁�...
本條目存在以下問題,請協助改善本條目或在討論頁針對議題發表看法。 此條目需要編修,以確保文法、用詞、语气、格式、標點等使用恰当。 (2013年8月6日)請按照校對指引,幫助编辑這個條目。(幫助、討論) 此條目剧情、虛構用語或人物介紹过长过细,需清理无关故事主轴的细节、用語和角色介紹。 (2020年10月6日)劇情、用語和人物介紹都只是用於了解故事主軸,輔助�...
American college basketball season 2014–15 Furman Paladins men's basketballConferenceSouthern ConferenceRecord11–22 (5–13 SoCon)Head coachNiko Medved (2nd season)Assistant coaches Bob Richey Jay McAuley Dwight Perry Home arenaTimmons ArenaSeasons← 2013–142015–16 → 2014–15 Southern Conference men's basketball standings vte Conf Overall Team W L PCT W L PCT Wofford † 16 – 2 .889 28 – 7 .800 Chatt...
ملعب ماريو ألبيرتو كيمبسEstadio Mario Alberto Kempes (بالإسبانية) معلومات عامةسمّي باسم ماريو كيمبس العنوان Av. Cárcano s/n (بالإسبانية) المنطقة الإدارية قرطبة البلد الأرجنتين التشييد والافتتاحالافتتاح الرسمي 16 مايو 1978 الاستعمالالرياضة كرة القدم اتحاد الرغبي المستضيف تاليريس كوردوبا �...
Pour le roman, voir Sérotonine (roman). Sérotonine Identification Nom UICPA 3-(2-aminoéthyl)-1H-indol-5-ol No CAS 50-67-9 No ECHA 100.000.054 No CE 200-058-9 PubChem 5202 SMILES C1=CC2=C(C=C1O)C(=CN2)CCN PubChem, vue 3D InChI InChI : vue 3D InChI=1/C10H12N2O/c11-4-3-7-6-12-10-2-1-8(13)5-9(7)10/h1-2,5-6,12-13H,3-4,11H2 Propriétés chimiques Formule C10H12N2O [Isomères] Masse molaire[2] 176,215 1 ± 0,009 5 g/mol C 68,16 %, ...
Черво́нное каза́чество (укр. Червоне козацтво) — общевойсковое соединение (с 1920 года — корпус) вооружённых сил Советской Украины в период Гражданской войны. Было сформировано правительством Украинской Народной Республики Советов со столицей в Харькове в противовес ...
此條目没有列出任何参考或来源。 (2018年3月3日)維基百科所有的內容都應該可供查證。请协助補充可靠来源以改善这篇条目。无法查证的內容可能會因為異議提出而被移除。 河合曾良出生1649年??月??日 日本 信濃国下桑原村逝世1710年6月18日 日本 壱岐国勝本職業俳諧師體裁俳句代表作曾良旅日記 河合曾良(日语:河合 曾良/かわい そら Kawai Sora,1649年—1710年6月1...
You can help expand this article with text translated from the corresponding article in Japanese. (February 2022) Click [show] for important translation instructions. View a machine-translated version of the Japanese article. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English W...
KreisleiterCadreType Nazi party paramilitary rank, activitéPays Allemagnemodifier - modifier le code - modifier Wikidata Un Kreisleiter (prononciation allemande : [ˈkʁaɪsˌlaɪtɐ] ; chef de district) était un cadre officiel du NSDAP (le Parti nazi), chargé de la surveillance politique d'un Kreis, subdivision territoriale de l'Allemagne nazie. Il avait un rôle d'animation et d'organisation politique dans son arrondissement. Contexte historique Les brassards et les drap...
Основные статьи: Чемпионат мира по футболу 2018 и Чемпионат мира по футболу 2022 Выборы организаторов чемпионатов мира по футболу 2018 и 2022 состоялись 2 декабря 2010 года в Цюрихе. Содержание 1 Условия подачи заявок 2 Голосование 2.1 Условия голосования 2.2 Члены исполкома ФИФА 3 И...
American baseball umpire and executive Not to be confused with Thomas Lynch (pitcher) or Tom Lynch (baseball). Thomas LynchThomas Lynch as National League presidentBorn1859New Britain, Connecticut, U.S.DiedFebruary 27, 1924(1924-02-27) (aged 64–65)Hartford, Connecticut, U.S.NationalityAmericanOccupation(s)Umpire, National League president Thomas J. Lynch (1859 – February 27, 1924) was an umpire in Major League Baseball for 13 seasons, all of which were in the National League (NL), be...
Coefficients of an algebra over a field Using the cross product as a Lie bracket, the algebra of 3-dimensional real vectors is a Lie algebra isomorphic to the Lie algebras of SU(2) and SO(3). The structure constants are f a b c = ϵ a b c {\displaystyle f^{abc}=\epsilon ^{abc}} , where ϵ a b c {\displaystyle \epsilon ^{abc}} is the antisymmetric Levi-Civita symbol. In mathematics, the structure constants or structure coefficients of an algebra over a field are the coefficients of...