Affirming the consequent

In propositional logic, affirming the consequent (also known as converse error, fallacy of the converse, or confusion of necessity and sufficiency) is a formal fallacy (or an invalid form of argument) that is committed when, in the context of an indicative conditional statement, it is stated that because the consequent is true, therefore the antecedent is true. It takes on the following form:

If P, then Q.
Q.
Therefore, P.

which may also be phrased as

(P implies Q)
(therefore, Q implies P)

For example, it may be true that a broken lamp would cause a room to become dark. It is not true, however, that a dark room implies the presence of a broken lamp. There may be no lamp (or any light source). The lamp may also be off. In other words, the consequent (a dark room) can have other antecedents (no lamp, off-lamp), and so can still be true even if the stated antecedent is not.[1]

Converse errors are common in everyday thinking and communication and can result from, among other causes, communication issues, misconceptions about logic, and failure to consider other causes.[2]

A related fallacy is denying the antecedent. Two related valid forms of logical argument include modus tollens (denying the consequent) and modus ponens (affirming the antecedent).[3]

Formal description

Affirming the consequent is the action of taking a true statement and invalidly concluding its converse . The name affirming the consequent derives from using the consequent, Q, of , to conclude the antecedent P. This fallacy can be summarized formally as or, alternatively, .[4] The root cause of such a logical error is sometimes failure to realize that just because P is a possible condition for Q, P may not be the only condition for Q, i.e. Q may follow from another condition as well.[5][6]

Affirming the consequent can also result from overgeneralizing the experience of many statements having true converses. If P and Q are "equivalent" statements, i.e. , it is possible to infer P under the condition Q. For example, the statements "It is August 13, so it is my birthday" and "It is my birthday, so it is August 13" are equivalent and both true consequences of the statement "August 13 is my birthday" (an abbreviated form of ).

Of the possible forms of "mixed hypothetical syllogisms," two are valid and two are invalid. Affirming the antecedent (modus ponens) and denying the consequent (modus tollens) are valid. Affirming the consequent and denying the antecedent are invalid.[7]

Additional examples

Example 1

One way to demonstrate the invalidity of this argument form is with a counterexample with true premises but an obviously false conclusion. For example:

If someone lives in San Diego, then they live in California.
Joe lives in California.
Therefore, Joe lives in San Diego.

There are many places to live in California other than San Diego. On the other hand, one can affirm with certainty that "if someone does not live in California" (non-Q), then "this person does not live in San Diego" (non-P). This is the contrapositive of the first statement, and it must be true if and only if the original statement is true.

Example 2

If an animal is a dog, then it has four legs.
My cat has four legs.
Therefore, my cat is a dog.

Here, it is immediately intuitive that any number of other antecedents ("If an animal is a deer...", "If an animal is an elephant...", "If an animal is a moose...", etc.) can give rise to the consequent ("then it has four legs"), and that it is preposterous to suppose that having four legs must imply that the animal is a dog and nothing else. This is useful as a teaching example since most people can immediately recognize that the conclusion reached must be wrong (intuitively, a cat cannot be a dog), and that the method by which it was reached must therefore be fallacious.

Example 3

In Catch-22,[8] the chaplain is interrogated for supposedly being "Washington Irving"/"Irving Washington", who has been blocking out large portions of soldiers' letters home. The colonel has found such a letter, but with the chaplain's name signed.

"You can read, though, can't you?" the colonel persevered sarcastically. "The author signed his name."
"That's my name there."
"Then you wrote it. Q.E.D."

P in this case is 'The chaplain signs his own name', and Q 'The chaplain's name is written'. The chaplain's name may be written, but he did not necessarily write it, as the colonel falsely concludes.[8]

See also

References

  1. ^ Rosen, Kenneth H. (2019). Discrete Mathematics and its Applications: Kenneth H. Rosen. McGraw-Hill. ISBN 978-1260091991.
  2. ^ Lay, Steven (2014). Introduction to Analysis with Proof, 5th edition. Pearson. ISBN 978-0321747471.
  3. ^ Hurley, Patrick J. (2012). A Concise Introduction to Logic (11th ed.). Boston, Massachusetts: Cengage Learning. p. 362. ISBN 9781111346232. OCLC 711774631.
  4. ^ Hurley, Patrick J. (2010), A Concise Introduction to Logic (11th edition). Wadsworth Cengage Learning, pp. 362–63.
  5. ^ "Affirming the Consequent". Fallacy Files. Retrieved 9 May 2013.
  6. ^ Damer, T. Edward (2001). "Confusion of a Necessary with a Sufficient Condition". Attacking Faulty Reasoning (4th ed.). Wadsworth. p. 150. ISBN 0-534-60516-8.
  7. ^ Kelley, David (1998), The Art of Reasoning (3rd edition). Norton, pp. 290–94.
  8. ^ a b Heller, Joseph (1994). Catch-22. Vintage. pp. 438, 8. ISBN 0-09-947731-9.

Read other articles:

Kiss Sixth SensePoster promosiHangul키스 식스 센스 Alih Aksara yang DisempurnakanKiseu Sikseu Senseu PembuatDisney+BerdasarkanKiss Sixth Senseoleh Gatnyeo (갓녀)Ditulis olehJeon Yu-riSutradaraNam Ki-HoonPemeranSeo Ji-hyeYoon Kye-sangKim Ji-seokLee Joo-yeonNegara asalKorea SelatanBahasa asliKoreaProduksiRumah produksiArc MediaDistributorDisney+Rilis asliJaringanDisney+Format audioDolby DigitalRilis25 Mei 2022 (2022-05-25) Kiss Sixth Sense (Hangul: 키스 식스 센스...

 

Русские в Канаде Современное самоназвание русские Численность 548 140 человек (2021)[1] Расселение Онтарио, Британская Колумбия, Альберта и другие провинции Язык русский, английский и французский Религия православие (в т.ч. старообрядчество), духовное христианство и катол...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (مارس 2019) ويليام هنري آيرلادند معلومات شخصية الميلاد 4 أكتوبر 1884  ترنتون  [لغات أخرى]‏  الوفاة 22 أبريل 1962 (77 سنة)   ترنتون  [لغات أخرى]‏  مواطنة كن...

2005 greatest hits album by Woody GuthrieVery Best of Woody GuthrieGreatest hits album by Woody GuthrieReleasedMay 31, 2005RecordedApril 16, 1944 – March 25, 1945GenreFolk rockLabelPurple Pyramid (Cleopatra) The Very Best of Woody Guthrie is a compilation album by American singer-songwriter and folk musician Woody Guthrie. It was released in May 2005 by Purple Pyramid, a sub-label of Cleopatra Records. The album contains 13 songs recorded between 1944 and 1945,[1] plus a re...

 

Cette page concerne l'année 1438 du calendrier julien. Chronologies L'Inca Pachacutec. Chronique de Martin de Murua, fin du XVIe siècle.Données clés 1435 1436 1437  1438  1439 1440 1441Décennies :1400 1410 1420  1430  1440 1450 1460Siècles :XIIIe XIVe  XVe  XVIe XVIIeMillénaires :-Ier Ier  IIe  IIIe Chronologies thématiques Art Arts plastiques (Dessin, Gravure, Peinture et Sculpture), () et Musique classique   Religion ...

 

Indian scholar and politician Ram Dayal MundaBorn(1939-08-23)23 August 1939Diuri village, Ranchi, Bihar, (now in Jharkhand), British RajDied30 September 2011(2011-09-30) (aged 72)Diuri village, Tamar, Ranchi, Jharkhand, IndiaResting placeDiuri village, Tamar, Ranchi, Jharkhand, India23.046 N, 85.680 ENationalityIndianEducationRanchi University, Ranchi, 1957–63, M.A. (Anthropology)University of Chicago, 1963–70, M.A. (Linguistics)Alma materRanchi University, University of Chicago...

Ocna SibiuluiKota Lambang kebesaranLetak Ocna SibiuluiNegara RumaniaCountyCounty SibiuStatusKotaPemerintahan • Wali kotaIoan Balteș (Partidul Social Democrat)Luas • Total87,46 km2 (3,377 sq mi)Populasi (2011) • Total3.372Zona waktuUTC+2 (EET) • Musim panas (DST)UTC+3 (EEST) Populasi historis Tahun JumlahPend.  ±%   1912 4.048—     1977 5.048+24.7% 1992 4.423−12.4% 2002 4.184�...

 

Pelabuhan Rashid dari atas Pelabuhan Rashid (juga dikenal sebagai Mina' Rashid) merupakan sebuah pelabuhan komersial buatan manusia di Dubai, Uni Emirat Arab. Dinamai setelah Sheikh Rashid bin Saeed Al Maktoum, pelabuhan ini dibuka tahun 1972.[1][2] Pada waktu itu pelabuhan tersebut hanya memiliki dua takal beroda dan kapasitas kurang dari 100.000 TEU.[2] Tahun 1978, pelabuhan ini diperluas untuk menambah 35 tempat berlabuh (lima di antaranya dapat digunakan oleh kapal...

 

This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: La-ba'shum – news · newspapers · books · scholar · JSTOR (August 2009) (Learn how and when to remove this template message) Asia portal La-ba'shum of Uruk was the eighth Sumerian ruler in the First Dynasty of Uruk (ca. 26th century BC), according to the Sumerian King List. Regna...

追晉陸軍二級上將趙家驤將軍个人资料出生1910年 大清河南省衛輝府汲縣逝世1958年8月23日(1958歲—08—23)(47—48歲) † 中華民國福建省金門縣国籍 中華民國政党 中國國民黨获奖 青天白日勳章(追贈)军事背景效忠 中華民國服役 國民革命軍 中華民國陸軍服役时间1924年-1958年军衔 二級上將 (追晉)部队四十七師指挥東北剿匪總司令部參謀長陸軍�...

 

政治腐敗 概念 反腐敗 賄賂 裙帶關係 腐败经济学(英语:Economics of corruption) 选举操控 精英俘获(英语:Elite capture) 权力寻租 竊盜統治 黑手黨國家 裙帶關係 行贿基金 買賣聖職 各国腐败 亚洲 中国 治貪史 中華人民共和國 朝鲜 菲律宾 欧洲 俄羅斯(英语:Corruption in Russia) 乌克兰 英国 法国 查论编   此条目的内容是1949年中華人民共和國成立以后中国大陆的国家�...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Royal Dutch Chess Federation – news · newspapers · books · scholar · JSTOR (December 2014) (Learn how and when to remove this message) Press conference in Amsterdam on the occasion of KNSB's 100th anniversary; from left to right with booklet Mr. Ruth (chairman ...

Aplikasi teknologi pertanian dalam pemanenan kentang Teknologi pertanian adalah penerapan dari ilmu-ilmu terapan dan teknik pada kegiatan pertanian. Definisi ilmiah Teknologi pertanian merupakan penerapan prinsip-prinsip matematika dan ilmu pengetahuan alam dalam rangka pendayagunaan secara ekonomis sumber daya pertanian dan sumber daya alam untuk kesejahteraan manusia.[1] Falsafahnya teknologi pertanian merupakan praktik-empirik yang bersifat pragmatik finalistik, dilandasi paham mek...

 

Ethnic group of current Ukraine and Russia Not to be confused with Kazakhs or Cassock. For other uses, see Cossacks (disambiguation). Part of a series onCossacksReply of the Zaporozhian Cossacks Cossack hosts Amur Astrakhan Azov Baikal Black Sea Buh Caucasus Danube Don Free Greben Kuban Orenburg Red Semirechye Siberian Terek Ural Ussuri Volga Zaporozhian Other Cossack groups Albazinan Bashkir Danube Jewish Nekrasov Persian Tatar Turkish History Registered Cossacks Uprisings Kosiński Nalyvaik...

 

Gedung CBS di Yerusalem Biro Pusat Statistik Israel (Ibrani: הלשכה המרכזית לסטטיסטיקה, HaLishka HaMerkazit LiStatistika), disingkat CBS (dari Central Bureau of Statistics), adalah sebuah kantor pemerintahan Israel yang didirikan pada 1949 untuk mengurusi penelitian dan penerbitan data statistik tentang seluruh aspek kehidupan di Israel, meliputi jumlah penduduk, masyarakat, ekonomi, industri, pendidikan, dan infrastruktur fisik.[1] CBS bermarkas besar di Giva...

H.PaisalSKM,MARS Wali Kota Dumai ke-6PetahanaMulai menjabat 26 Februari 2021PresidenJoko WidodoGubernurSyamsuar Edy Nasution S. F. Hariyanto (Pj.)WakilAmris (Februari 2021-April 2021)PendahuluZulkifli Adnan Singkah Herdi Salioso (Plh.) Jonli (Pj.)PenggantiPetahana Informasi pribadiLahir12 Januari 1975 (umur 49)Bagansiapiapi,Rokan Hilir, RiauKebangsaanIndonesiaPartai politikNasDemSuami/istriHj. Leni Ramaini,SKMAnak4Alma materUniversitas Sumatera UtaraPekerjaanPolitisiBirokratSunti...

 

19th-century American genre painter William Sidney MountDaguerreotype photograph of Mountby Mathew B. Brady, c. 1855BornNovember 26, 1807Setauket, New YorkDiedNovember 19, 1868 (1868-11-20) (aged 60)Setauket, New YorkNationalityAmericanKnown forGenre, landscape, portrait painting, and violin design William Sidney Mount (November 26, 1807 – November 19, 1868) was a 19th-century American genre painter. Born in Setauket, New York in 1807, Mount spent much of his life in hi...

 

Andrea Kimi AntonelliAntonelli dopo aver vinto la gara di Spa nel 2022Nazionalità Italia Altezza172 cm Automobilismo CategoriaFormula 2 RuoloPilota Squadra Prema Racing   Modifica dati su Wikidata · Manuale Andrea Kimi Antonelli (Bologna, 25 agosto 2006) è un pilota automobilistico italiano, attivo in Formula 2 con la Prema Racing. È diventato due volte campione europeo di Kart nella categoria OK nel 2020 e 2021[1]. In monoposto ha vinto la Formula 4 ADAC, la Formul...

Pocut Meuligoe adalah seorang pemimpin wanita pewaris tahta Kerajaan Samalanga (Aceh). Pada saat Belanda hendak memasuki Samalanga, Pocut Meuligoe yang masih belia telah berhasil mempertahankan wilayah kerajaannya. Ia mewajibkan setiap pria untuk turun ke medan perang dan bertindak tegas kepada setiap pria yang mangkir dari kewajibannya tersebut.[1] Latar belakang Pocut Meuligoe termasuk dalam para wanita pejuang Aceh, seperti Cut Nyak Dhien, Cut Nyak Meutia, dan Tengku Fakinah. Wanit...

 

Иоксинил Общие Систематическоенаименование 4-​гидрокси-​3,5-​дийодобензонитрил Хим. формула C7H3I2NO Физические свойства Состояние твёрдое Молярная масса 370,92 г/моль Плотность 2,72 г/см³ Термические свойства Температура  • плавления 212–213 °C Химические с�...