Confusion of the inverse

Confusion of the inverse, also called the conditional probability fallacy or the inverse fallacy, is a logical fallacy whereupon a conditional probability is equated with its inverse; that is, given two events A and B, the probability of A happening given that B has happened is assumed to be about the same as the probability of B given A, when there is actually no evidence for this assumption.[1][2] More formally, P(A|B) is assumed to be approximately equal to P(B|A).

Examples

Example 1

Relative
size
Malignant Benign Total
Test
positive
0.8
(true positive)
9.9
(false positive)
10.7
Test
negative
0.2
(false negative)
89.1
(true negative)
89.3
Total 1 99 100

In one study, physicians were asked to give the chances of malignancy with a 1% prior probability of occurring. A test can detect 80% of malignancies and has a 10% false positive rate. What is the probability of malignancy given a positive test result?[3] Approximately 95 out of 100 physicians responded the probability of malignancy would be about 75%, apparently because the physicians believed that the chances of malignancy given a positive test result were approximately the same as the chances of a positive test result given malignancy.[4]

The correct probability of malignancy given a positive test result as stated above is 7.5%, derived via Bayes' theorem:

Other examples of confusion include:

  • Hard drug users tend to use marijuana; therefore, marijuana users tend to use hard drugs (the first probability is marijuana use given hard drug use, the second is hard drug use given marijuana use).[5]
  • Most accidents occur within 25 miles from home; therefore, you are safest when you are far from home.[5]
  • Terrorists tend to have an engineering background; so, engineers have a tendency towards terrorism.[6]

For other errors in conditional probability, see the Monty Hall problem and the base rate fallacy. Compare to illicit conversion.

Example 2

Relative
size (%)
Ill Well Total
Test
positive
0.99
(true positive)
0.99
(false positive)
1.98
Test
negative
0.01
(false negative)
98.01
(true negative)
98.02
Total 1 99 100

In order to identify individuals having a serious disease in an early curable form, one may consider screening a large group of people. While the benefits are obvious, an argument against such screenings is the disturbance caused by false positive screening results: If a person not having the disease is incorrectly found to have it by the initial test, they will most likely be distressed, and even if they subsequently take a more careful test and are told they are well, their lives may still be affected negatively. If they undertake unnecessary treatment for the disease, they may be harmed by the treatment's side effects and costs.

The magnitude of this problem is best understood in terms of conditional probabilities.

Suppose 1% of the group suffer from the disease, and the rest are well. Choosing an individual at random,

Suppose that when the screening test is applied to a person not having the disease, there is a 1% chance of getting a false positive result (and hence 99% chance of getting a true negative result, a number known as the specificity of the test), i.e.

Finally, suppose that when the test is applied to a person having the disease, there is a 1% chance of a false negative result (and 99% chance of getting a true positive result, known as the sensitivity of the test), i.e.

Calculations

The fraction of individuals in the whole group who are well and test negative (true negative):

The fraction of individuals in the whole group who are ill and test positive (true positive):

The fraction of individuals in the whole group who have false positive results:

The fraction of individuals in the whole group who have false negative results:

Furthermore, the fraction of individuals in the whole group who test positive:

Finally, the probability that an individual actually has the disease, given that the test result is positive:

Conclusion

In this example, it should be easy to relate to the difference between the conditional probabilities P(positive | ill) which with the assumed probabilities is 99%, and P(ill | positive) which is 50%: the first is the probability that an individual who has the disease tests positive; the second is the probability that an individual who tests positive actually has the disease. Thus, with the probabilities picked in this example, roughly the same number of individuals receive the benefits of early treatment as are distressed by false positives; these positive and negative effects can then be considered in deciding whether to carry out the screening, or if possible whether to adjust the test criteria to decrease the number of false positives (possibly at the expense of more false negatives).

See also

References

  1. ^ Plous, Scott (1993). The Psychology of Judgment and Decisionmaking. pp. 131–134. ISBN 978-0-07-050477-6.[full citation needed]
  2. ^ Villejoubert, Gaëlle; Mandel, David (2002). "The inverse fallacy: An account of deviations from Bayes's Theorem and the additivity principle". Memory & Cognition. 30 (5): 171–178. doi:10.3758/BF03195278. PMID 12035879.
  3. ^ Eddy, David M. (1982). "Probabilistic reasoning in clinical medicine: Problems and opportunities". In Kahneman, D.; Slovic, P.; Tversky, A. (eds.). Judgment under uncertainty: Heuristics and biases. New York: Cambridge University Press. pp. 249–267. ISBN 0-521-24064-6. Description simplified as in Plous (1993).
  4. ^ Eddy (1982, p. 253). "Unfortunately, most physicians (approximately 95 out of 100 in an informal sample taken by the author) misinterpret the statements about the accuracy of the test and estimate P(ca|pos) to be about 75%."
  5. ^ a b Hastie, Reid; Robyn Dawes (2001). Rational Choice in an Uncertain World. pp. 122–123. ISBN 978-0-7619-2275-9.[full citation needed]
  6. ^ see "Engineers make good terrorists?". Slashdot. 2008-04-03. Retrieved 2008-04-25.

Read other articles:

Kejuaraan Dunia Futsal FIFA 2000(Spanyol) Campeonato Mundial de Fútbol Sala de la FIFA 2000Informasi turnamenTuan rumah GuatemalaJadwalpenyelenggaraan18 November s.d. 3 Desember 2000Jumlahtim peserta16 (dari 6 konfederasi)Tempatpenyelenggaraan2 (di 1 kota)Hasil turnamenJuara Spanyol (gelar ke-1)Tempat kedua BrasilTempat ketiga PortugalTempat keempat RusiaStatistik turnamenJumlahpertandingan40Jumlah gol302 (7,55 per pertandingan)Jumlahpenonton224.038...

 

1979 single by Wet WillieWeekendSingle by Wet Williefrom the album Which One's Willie? B-sideMr. StreamlineReleasedMay 1979GenrePopLength3:40 (single edit) 7:14 (LP version)LabelEpic RecordsSongwriter(s)Mick Jackson, Tommy MayerProducer(s)Lennie PetzeWet Willie singles chronology Make You Feel Love Again (1978) Weekend (1979) I'm Happy That Love Has Found You (1980) Weekend is a song written by English singer-songwriter Mick Jackson and Tommy Mayer, and released in 1978 on Jackson's Weekend a...

 

طابع بريدي بالولايات المتحدة عام 1960م يدعو علي الحفاظ على المياه ترشيد استهلاك المياه أو الحفاظ على المياه يشمل جميع السياسات والاستراتيجيات والأنشطة لإدارة الموارد الطبيعية للمياه العذبة على نحو مستدام، وحماية غلاف الأرض المائي، وتلبية الطلب البشري الحالي والمستقبلي. ي...

Pencak silat padaPekan Olahraga Nasional XIX Seni Putra Putri   Tunggal     Tunggal     Ganda Ganda Regu Regu Tanding Putra Putri   Kelas A     Kelas A     Kelas B Kelas B Kelas C Kelas C Kelas D Kelas D Kelas E Kelas E Kelas F Kelas F Kelas G Kelas H Kelas I Pencak silat kelas I putra pada Pekan Olahraga Nasional XIX dilaksanakan pada tanggal 19 sampai 25 september 2016 di Graha Laga Satria, ITB Jatinangor,Kabupaten Sumedang, Jawa Barat.[...

 

Engagement during the 2022 Russian invasion of Ukraine Battle of VolnovakhaPart of the eastern Ukraine offensive of the 2022 Russian invasion of UkraineDamage from shelling in Volnovakha, 27 February 2022Date25 February – 12 March 2022(2 weeks and 1 day)LocationVolnovakha, Donetsk Oblast, UkraineResult Russian victoryBelligerents  Russia Donetsk PR  UkraineCommanders and leaders Alexei Berngard Vladimir Zhoga † Pavlo Sbytov †Units involved DPR ...

 

Chronologie de la France ◄◄ 1680 1681 1682 1683 1684 1685 1686 1687 1688 ►► Chronologies Carte de la France, 1684Données clés 1681 1682 1683  1684  1685 1686 1687Décennies :1650 1660 1670  1680  1690 1700 1710Siècles :XVe XVIe  XVIIe  XVIIIe XIXeMillénaires :-Ier Ier  IIe  IIIe Chronologies thématiques Art Architecture, Arts plastiques (Dessin, Gravure, Peinture et Sculpture), Littérature, Musique classique et Théâtre &#...

Spanish cardinal In this Spanish name, the first or paternal surname is Rouco and the second or maternal family name is Varela. His EminenceAntonio Rouco VarelaCardinal, Archbishop emeritus of MadridAntonio María Rouco VarelaArchdioceseMadridAppointed28 July 1994Term ended28 August 2014PredecessorAngel Suquía GoicoecheaSuccessorCarlos Osoro SierraOther post(s)Cardinal-Priest of San Lorenzo in DamasoPresident of the Spanish Episcopal ConferenceOrdersOrdination28 March 1959by Ang...

 

PT Equity Life IndonesiaJenisJasa keuangan/publikDidirikanJakarta, Indonesia (1987)Kantorpusat Jakarta, IndonesiaTokohkunciSamuel Setiawan (Presiden Direktur)Situs webwww.equity.co.id PT Equity Life Indonesia atau lebih dikenal sebagai Equity Life adalah sebuah perusahaan Asuransi Jiwa yang berdiri sejak 1987 dan berkantor pusat di Jakarta. Sebelumnya, perusahaan bernama Asuransi Jiwa Binadaya Nusa Indah sejak berdiri hingga tahun 2003, kemudian berganti menjadi Equity Financial Solution hing...

 

US Supreme Court justice from 1892 to 1903 George Shiras Jr.Shiras c. 1899Associate Justice of the Supreme Court of the United StatesIn officeOctober 10, 1892 – February 23, 1903Nominated byBenjamin HarrisonPreceded byJoseph BradleySucceeded byWilliam Day Personal detailsBorn(1832-01-26)January 26, 1832Pittsburgh, Pennsylvania, U.S.DiedAugust 2, 1924(1924-08-02) (aged 92)Pittsburgh, Pennsylvania, U.S.Resting placeAllegheny CemeteryPolitical partyRepublicanSpouse Lillie Kennedy...

Tinjauan Udara tutupan tajuk Penutupan tajuk, dalam kehutanan, merupakan ukuran tutupan kanopi hutan . Penutupan tajuk dan tutupan tajuk adalah dua ukuran kanopi hutan yang sedikit berbeda dan menentukan jumlah cahaya yang dapat menembus ke lantai hutan. Penutupan tajuk, juga dikenal sebagai penutupan kanopi, adalah ukuran kanopi terpadu di atas segmen belahan langit di atas satu titik di permukaan tanah.[1] Tutupan tajuk adalah proporsi suatu tegakan yang ditutupi oleh tajuk pohon hi...

 

Virginia ApgarLahir(1909-06-07)7 Juni 1909Westfield, New JerseyMeninggal7 Agustus 1974(1974-08-07) (umur 65)New York City, New York Virginia Apgar (7 Juni 1909– 7 Agustus 1974) adalah seorang dokter wanita Amerika Serikat. Dia adalah ahli di bidang anastesi, teratologi dan pendiri bidang neonatologi. Bagi khayalak ramai dia terkenal sebagai penemu metode penentuan kesehatan bayi yang baru lahir yang dikenal sebagai Skor Apgar. Hasil penemuan ini telah mengurangi jumlah kematian bayi d...

 

Scottish football player and manager (1922–1985) For other people with the same name, see John Stein (disambiguation). Jock Stein CBE Stein in 1971Personal informationFull name John SteinDate of birth (1922-10-05)5 October 1922Place of birth Burnbank, Lanarkshire, ScotlandDate of death 10 September 1985(1985-09-10) (aged 62)Place of death Cardiff, WalesPosition(s) Centre-backYouth career1940–1942 Blantyre VictoriaSenior career*Years Team Apps (Gls)1940–1942 Blantyre Victoria 1942�...

Країни колишньої радянської окупації ККРО, адміністративних одиниць, які підпорядковувалися безпосередньо уряду СРСР. На початку свого існування, в 1922 р., ККРО складався з 4 союзних республік: РРФСР, УРСР, БРСР, ЗРФСР. У 1940—1956 роках до складу ККРО входила 16-та республік�...

 

Частина серії проФілософіяLeft to right: Plato, Kant, Nietzsche, Buddha, Confucius, AverroesПлатонКантНіцшеБуддаКонфуційАверроес Філософи Епістемологи Естетики Етики Логіки Метафізики Соціально-політичні філософи Традиції Аналітична Арістотелівська Африканська Близькосхідна іранська Буддій�...

 

AustriansÖsterreicherBendera AustriaDaerah dengan populasi signifikan Austria 6,75 juta[1] Amerika Serikat684.184[2] Jerman345.620[3] Kanada197.990[4] Australia45.530[5]  Swiss40.300–65.090[6][7][8] Britania Raya21.600–25.000[7][8] Prancis20.000[8][9] Argentina17.000[7] Italia16.331[8] Afrika Selatan14.000[7]&#...

Piotr Nalitch Informations générales Nom de naissance Piotr Andreïevitch Nalitch Naissance 30 avril 1981 (43 ans)Moscou Activité principale chanteur Genre musical vipelite / baburi / musique alternative Instruments piano, guitare acoustique, accordéon Années actives Depuis 2007 Site officiel http://www.peternalitch.ru/ modifier Piotr Andreïevitch Nalitch (en russe : Налич Пётр Андреевич), connu en anglais sous le nom Peter Nalitch, est un chanteur russe, n�...

 

La formula minima (o formula empirica) è una particolare formula molecolare in cui il numero di atomi di ciascun elemento costituente è ridotto al massimo comun divisore relativo. La formula minima non fornisce informazioni su isomerie e ramificazioni. La formula minima ha, di fatto, una bassa utilità sia pratica che teorica. Rappresenta semplicemente il primo stadio da cui partire per ricostruire la formula molecolare di un composto del quale si conoscono ad esempio solo la percentuale di...

 

Existen dudas o desacuerdos sobre la exactitud de la información en este artículo o sección. Consulta el debate al respecto en la página de discusión.Este aviso fue puesto el 21 de mayo de 2021. Confederación IndígenaConfederación Indígena de la Provincia de Caracas 1567-1577 Provincia de CaracasCapital Maracapana (antigua Laguna de Catia en Caracas)Idioma oficial CaribearahuacosjirajaraReligión PoliteísmoPeríodo histórico Guerra hispano-caribeña • 1567 Asamblea de Marac...

American author (born 1952) Diana GabaldonGabaldon in 2017Born (1952-01-11) January 11, 1952 (age 72)Williams, Arizona, USOccupationNovelist, professorEducation Northern Arizona University (BS, PhD) University of California, San Diego (MS) Period1991–presentGenreSpeculative fiction, historical fiction, historical romance, historical mystery, historical fantasy, scientific literatureNotable works Science Software Quarterly Outlander series Lord John series SpouseDoug WatkinsChildren3 (i...

 

Athletics at the1995 Summer UniversiadeTrack events100 mmenwomen200 mmenwomen400 mmenwomen800 mmenwomen1500 mmenwomen5000 mmenwomen10,000 mmenwomen100 m hurdleswomen110 m hurdlesmen400 m hurdlesmenwomen3000 msteeplechasemen4×100 m relaymenwomen4×400 m relaymenwomenRoad eventsMarathonmenwomen10 km walkwomen20 km walkmenField eventsHigh jumpmenwomenPole vaultmenLong jumpmenwomenTriple jumpmenwomenShot putmenwomenDiscus throwmenwomenHammer throwmenJavelin throwmenwomenCombined eventsHeptathlo...