Achromatopsia

Achromatopsia
Other namesRod Monochromacy
SpecialtyOphthalmology Edit this on Wikidata
SymptomsMonochromacy, Day blindness, Photophobia
CausesCongenital malfunction of the Visual phototransduction pathway
Diagnostic methodElectroretinography
Frequency1/30,000 × 100% = 0.0033%

Achromatopsia, also known as rod monochromacy, is a medical syndrome that exhibits symptoms relating to five conditions, most notably monochromacy. Historically, the name referred to monochromacy in general, but now typically refers only to an autosomal recessive congenital color vision condition. The term is also used to describe cerebral achromatopsia, though monochromacy is usually the only common symptom. The conditions include: monochromatic color blindness, poor visual acuity, and day-blindness. The syndrome is also present in an incomplete form that exhibits milder symptoms, including residual color vision. Achromatopsia is estimated to affect 1 in 30,000 live births worldwide.

Signs and symptoms

The five symptoms associated with achromatopsia are:[citation needed]

  1. Color blindness – usually monochromacy
  2. Reduced visual acuity – uncorrectable with lenses
  3. Hemeralopia – with the subject exhibiting photophobia
  4. Nystagmus
  5. Iris operating abnormalities

The syndrome is typically first noticed in children around six months of age due to their photophobia or their nystagmus. The nystagmus becomes less noticeable with age but the other symptoms of the syndrome become more relevant as school age approaches. Visual acuity and stability of the eye motions generally improve during the first six to seven years of life – but remain near 20/200. Otherwise the syndrome is considered stationary and does not worsen with age.[citation needed]

If the light level during testing is optimized, achromats may achieve corrected visual acuity of 20/100 to 20/150 at lower light levels, regardless of the absence of color.[citation needed] The fundus of the eye appears completely normal.[citation needed]

Achromatopsia can be classified as complete or incomplete. In general, symptoms of incomplete achromatopsia are attenuated versions of those of complete achromatopsia. Individuals with incomplete achromatopsia have reduced visual acuity with or without nystagmus or photophobia. Incomplete achromats show only partial impairment of cone cell function.[citation needed]

Cause

Achromatopsia is sometimes called rod monochromacy (as opposed to blue cone monochromacy), as achromats exhibit a complete absence of cone cell activity via electroretinography in photopic lighting. There are at least four genetic causes of achromatopsia, two of which involve cyclic nucleotide-gated ion channels (ACHM2, ACHM3), a third involves the cone photoreceptor transducin (GNAT2, ACHM4), and the last remains unknown.[citation needed]

Known genetic causes of this include mutations in the cone cell cyclic nucleotide-gated ion channels CNGA3 (ACHM2)[1] and CNGB3 (ACHM3), the cone cell transducin, GNAT2 (ACHM4), subunits of cone phosphodiesterase PDE6C (ACHM5, OMIM 613093)[2] and PDEH (ACHM6, OMIM 610024), and ATF6 (ACHM7, OMIM 616517).

Pathophysiology

The hemeralopic aspect of achromatopsia can be diagnosed non-invasively using electroretinography. The response at low (scotopic) and median (mesopic) light levels will be normal but the response under high light level (photopic) conditions will be absent. The mesopic level is approximately a hundred times lower than the clinical level used for the typical high level electroretinogram. When as described; the condition is due to a saturation in the neural portion of the retina and not due to the absence of the photoreceptors per se.[citation needed]

In general, the molecular pathomechanism of achromatopsia is either the inability to properly control or respond to altered levels of cGMP; particularly important in visual perception as its level controls the opening of cyclic nucleotide-gated ion channels (CNGs). Decreasing the concentration of cGMP results in closure of CNGs and resulting hyperpolarization and cessation of glutamate release. Native retinal CNGs are composed of 2 α- and 2 β-subunits, which are CNGA3 and CNGB3, respectively, in cone cells. When expressed alone, CNGB3 cannot produce functional channels, whereas this is not the case for CNGA3. Coassembly of CNGA3 and CNGB3 produces channels with altered membrane expression, ion permeability (Na+ vs. K+ and Ca2+), relative efficacy of cAMP/cGMP activation, decreased outward rectification, current flickering, and sensitivity to block by L-cis-diltiazem.[citation needed]

Mutations tend to result in the loss of CNGB3 function or gain of function—often increased affinity for cGMP—of CNGA3. cGMP levels are controlled by the activity of the cone cell transducin, GNAT2. Mutations in GNAT2 tend to result in a truncated and, presumably, non-functional protein, thereby preventing alteration of cGMP levels by photons. There is a positive correlation between the severity of mutations in these proteins and the completeness of the achromatopsia phenotype.[citation needed]

Molecular diagnosis can be established by identification of biallelic variants in the causative genes. Molecular genetic testing approaches used in achromatopsia can include targeted analysis for the common CNGB3 variant c.1148delC (p.Thr383IlefsTer13), use of a multigenerational panel, or comprehensive genomic testing.[citation needed]

ACHM2

While some mutations in CNGA3 result in truncated and, presumably, non-functional channels this is largely not the case. While few mutations have received in-depth study, at least one mutation does result in functional channels. Curiously, this mutation, T369S, produces profound alterations when expressed without CNGB3. One such alteration is decreased affinity for Cyclic guanosine monophosphate. Others include the introduction of a sub-conductance, altered single-channel gating kinetics, and increased calcium permeability.[citation needed]

When mutant T369S channels coassemble with CNGB3, however, the only remaining aberration is increased calcium permeability.[3] While it is not immediately clear how this increase in Ca2+ leads to achromatopsia, one hypothesis is that this increased current decreases the signal-to-noise ratio. Other characterized mutations, such as Y181C and the other S1 region mutations, result in decreased current density due to an inability of the channel to traffic to the surface.[4] Such loss of function will undoubtedly negate the cone cell's ability to respond to visual input and produce achromatopsia. At least one other missense mutation outside of the S1 region, T224R, also leads to loss of function.[3]

ACHM3

While very few mutations in CNGB3 have been characterized, the vast majority of them result in truncated channels that are presumably non-functional. This will largely result in haploinsufficiency, though in some cases the truncated proteins may be able to coassemble with wild-type channels in a dominant negative fashion. The most prevalent ACHM3 mutation, T383IfsX12, results in a non-functional truncated protein that does not properly traffic to the cell membrane.[5][6]

The three missense mutations that have received further study show a number of aberrant properties, with one underlying theme. The R403Q mutation, which lies in the pore region of the channel, results in an increase in outward current rectification, versus the largely linear current-voltage relationship of wild-type channels, concomitant with an increase in cGMP affinity.[6] The other mutations show either increased (S435F) or decreased (F525N) surface expression but also with increased affinity for cAMP and cGMP.[5][6] It is the increased affinity for cGMP and cAMP in these mutants that is likely the disorder-causing change. Such increased affinity will result in channels that are insensitive to the slight concentration changes of cGMP due to light input into the retina.[citation needed]

ACHM4

Upon activation by light, cone opsin causes the exchange of GDP for GTP in the guanine nucleotide binding protein (G-protein) α-transducing activity polypeptide 2 (GNAT2). This causes the release of the activated α-subunit from the inhibitory β/γ-subunits. This α-subunit then activates a phosphodiesterase that catalyzes the conversion of cGMP to GMP, thereby reducing current through CNG3 channels. As this process is absolutely vital for proper color processing it is not surprising that mutations in GNAT2 lead to achromatopsia. The known mutations in this gene, all result in truncated proteins. Presumably, then, these proteins are non-functional and, consequently, cone opsin that has been activated by light does not lead to altered cGMP levels or photoreceptor membrane hyperpolarization.[citation needed]

Management

Gene therapy

As achromatopsia is linked to only a few single-gene mutations, it is a good candidate for gene therapy. Gene therapy is a technique for injecting functional genes into the cells that need them, replacing or overruling the original alleles linked to achromatopsia, thereby curing it – at least in part. Achromatopsia has been a focus of gene therapy since 2010, when achromatopsia in dogs was partially cured. Several clinical trials on humans are ongoing with mixed results.[7] In July 2023, a study found positive but limited improvements on congenital CNGA3 achromatopsia.[8][9]

Eyeborg

Since 2003, a cybernetic device called the eyeborg has allowed people to perceive color through sound waves. This form of Sensory substitution maps the hue perceived by a camera worn on the head to a pitch experienced through bone conduction according to a sonochromatic scale.[10] This allows achromats (or even the totally blind) to perceive – or estimate – the color of an object. Achromat and artist Neil Harbisson was the first to use the eyeborg in early 2004, which allowed him to start painting in color. He has since acted as a spokesperson for the technology, namely in a 2012 TED Talk. A 2015 study suggests that achromats who use the Eyeborg for several years exhibit neural plasticity, which indicates the sensory substitution has become intuitive for them.[11]

Other accommodations

While gene therapy and the Eyeborg may currently have low uptake with achromats, there are several more practical ways for achromats to manage their condition:

  • Some colors can be estimated through the use of colored filters. By comparing the luminosity of a color with and without a filter (or between two different filters), the color can be estimated. This is the premise of monocular lenses and the SeeKey. In some US states, achromats can use a red filter while driving to determine the color of a traffic light.[12]
  • To alleviate photophobia stemming from hemeralopia, dark red or plum colored filters as either sunglasses or tinted contacts are very helpful at decreasing light sensitivity.[13]
  • To manage the low visual acuity that is typical of achromatopsia, achromats may use telescopic systems, specifically when driving, to increase the resolution of an object of interest.[12]

Epidemiology

Achromatopsia is a relatively uncommon disorder, with a prevalence of 1 in 30,000 people.[14]

However, on the small Micronesian atoll of Pingelap, approximately five percent of the atoll's 3,000 inhabitants are affected.[15][16] This is the result of a population bottleneck caused by a typhoon and ensuing famine in the 1770s, which killed all but about twenty islanders, including one who was heterozygous for achromatopsia.[17]

The people of this region have termed achromatopsia "maskun", which literally means "not see" in Pingelapese.[18] This unusual population drew neurologist Oliver Sacks to the island for which he wrote his 1997 book, The Island of the Colorblind.[19]

Blue cone monochromacy

Blue cone monochromacy (BCM) is another genetic condition causing monochromacy. It mimics many of the symptoms of incomplete achromatopsia and before the discovery of its molecular biological basis was commonly referred to as x-linked achromatopsia, sex-linked achromatopsia or atypical achromatopsia. BCM stems from mutations or deletions of the OPN1LW and OPN1MW genes, both on the X chromosome. As a recessive x-linked condition, BCM disproportionately affects males, unlike typical achromatopsia.[citation needed]

Cerebral achromatopsia

Cerebral achromatopsia is a form of acquired color blindness that is caused by damage to the cerebral cortex. Damage is most commonly localized to visual area V4 of the visual cortex (the major part of the colour center), which receives information from the parvocellular pathway involved in color processing.[citation needed] It is most frequently caused by physical trauma, hemorrhage or tumor tissue growth.[20] If there is unilateral damage, a loss of color perception in only half of the visual field may result; this is known as hemiachromatopsia.[21] Cerebral achromats usually do not experience the other major symptoms of congenital achromatopsia, since photopic vision is still functions.[citation needed]

Color agnosia involves having difficulty recognizing colors, while still being able to perceive them as measured by a color matching or categorizing task.[22]

Terminology

Monochromacy
Complete lack of the perception of color in a subject, seeing only in black, white, and shades of grey.
Hemeralopia
Reduced visual capacity in bright light, i.e. day-blindness.
Nystagmus
Term to describe both normal and pathological conditions related to the oculomotor system. In the current context, it is a pathological condition involving an uncontrolled oscillatory movement of the eyes during which the amplitude of oscillation is quite noticeable and the frequency of the oscillation tends to be quite low.
Photophobia
Avoidance of bright light by those who have hemeralopia.

See also

References

Footnotes

  1. ^ Kohl, Susanne; Marx, Tim; Giddings, Ian; Jägle, Herbert; Jacobson, Samuel G.; Apfelstedt-Sylla, Eckhart; Zrenner, Eberhart; Sharpe, Lindsay T.; Wissinger, Bernd (July 1998). "Total colourblindness is caused by mutations in the gene encoding the α-subunit of the cone photoreceptor cGMP-gated cation channel". Nature Genetics. 19 (3): 257–259. doi:10.1038/935. PMID 9662398. S2CID 12040233.
  2. ^ Thiadens, Alberta A.H.J.; den Hollander, Anneke I.; Roosing, Susanne; Nabuurs, Sander B.; Zekveld-Vroon, Renate C.; Collin, Rob W.J.; De Baere, Elfride; Koenekoop, Robert K.; van Schooneveld, Mary J.; Strom, Tim M.; van Lith-Verhoeven, Janneke J.C.; Lotery, Andrew J.; van Moll-Ramirez, Norka; Leroy, Bart P.; van den Born, L. Ingeborgh; Hoyng, Carel B.; Cremers, Frans P.M.; Klaver, Caroline C.W. (August 2009). "Homozygosity Mapping Reveals PDE6C Mutations in Patients with Early-Onset Cone Photoreceptor Disorders". The American Journal of Human Genetics. 85 (2): 240–247. doi:10.1016/j.ajhg.2009.06.016. PMC 2725240. PMID 19615668.
  3. ^ a b Tränkner, Dimitri; Jägle, Herbert; Kohl, Susanne; Apfelstedt-Sylla, Eckart; Sharpe, Lindsay T.; Kaupp, U. Benjamin; Zrenner, Eberhart; Seifert, Reinhard; Wissinger, Bernd (2004-01-07). "Molecular Basis of an Inherited Form of Incomplete Achromatopsia". The Journal of Neuroscience. 24 (1): 138–147. doi:10.1523/JNEUROSCI.3883-03.2004. ISSN 0270-6474. PMC 6729583. PMID 14715947.
  4. ^ Patel, Kirti A.; Bartoli, Kristen M.; Fandino, Richard A.; Ngatchou, Anita N.; Woch, Gustaw; Carey, Jannette; Tanaka, Jacqueline C. (2005-07-01). "Transmembrane S1 Mutations in CNGA3 from Achromatopsia 2 Patients Cause Loss of Function and Impaired Cellular Trafficking of the Cone CNG Channel". Investigative Ophthalmology & Visual Science. 46 (7): 2282–2290. doi:10.1167/iovs.05-0179. ISSN 1552-5783. PMID 15980212.
  5. ^ a b Peng, Changhong; Rich, Elizabeth D.; Varnum, Michael D. (2003). "Achromatopsia-associated Mutation in the Human Cone Photoreceptor Cyclic Nucleotide-gated Channel CNGB3 Subunit Alters the Ligand Sensitivity and Pore Properties of Heteromeric Channels". Journal of Biological Chemistry. 278 (36): 34533–34540. doi:10.1074/jbc.M305102200. PMID 12815043.
  6. ^ a b c Bright 2005, pp. 1141–1150.
  7. ^ Farahbakhsh, Mahtab; Anderson, Elaine J; Maimon-Mor, Roni O; Rider, Andy; Greenwood, John A; Hirji, Nashila; Zaman, Serena; Jones, Pete R; Schwarzkopf, D Samuel; Rees, Geraint; Michaelides, Michel; Dekker, Tessa M (24 August 2022). "A demonstration of cone function plasticity after gene therapy in achromatopsia". Brain. 145 (11): 3803–3815. doi:10.1093/brain/awac226. PMC 9679164. PMID 35998912.
  8. ^ McKyton, Ayelet; Marks Ohana, Devora; Nahmany, Einav; Banin, Eyal; Levin, Netta (July 2023). "Seeing color following gene augmentation therapy in achromatopsia". Current Biology. 33 (16): 3489–3494.e2. Bibcode:2023CBio...33E3489M. doi:10.1016/j.cub.2023.06.041. PMID 37433300. S2CID 259504295.
  9. ^ Jackson, Justin; Xpress, Medical. "Gene therapy to restore color vision in complete achromatopsia patients shows modest improvement". medicalxpress.com. Retrieved 2023-08-28.
  10. ^ Ronchi, Alfredo M. (2009). eCulture. Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/978-3-540-75276-9. ISBN 978-3-540-75273-8.
  11. ^ Alfaro, Arantxa; Bernabeu, Ángela; Agulló, Carlos; Parra, Jaime; Fernández, Eduardo (14 April 2015). "Hearing colors: an example of brain plasticity". Frontiers in Systems Neuroscience. 9: 56. doi:10.3389/fnsys.2015.00056. PMC 4396351. PMID 25926778.
  12. ^ a b Windsor, Richard; Windsor, Laura. "Driving Issues". achromatopsia.info. Retrieved 21 October 2022.
  13. ^ Corn 2010, p. 233.
  14. ^ Thiadens, Alberta A.H.J.; Phan, T. My Lan; Zekveld-Vroon, Renate C.; Leroy, Bart P.; van den Born, L. Ingeborgh; Hoyng, Carel B.; Klaver, Caroline C.W.; Roosing, Susanne; Pott, Jan-Willem R.; van Schooneveld, Mary J.; van Moll-Ramirez, Norka; van Genderen, Maria M.; Boon, Camiel J.F.; den Hollander, Anneke I.; Bergen, Arthur A.B. (2012). "Clinical Course, Genetic Etiology, and Visual Outcome in Cone and Cone–Rod Dystrophy". Ophthalmology. 119 (4): 819–826. doi:10.1016/j.ophtha.2011.10.011. PMID 22264887.
  15. ^ Brody, Jacob A.; Hussels, Irena; Brink, Edward; Torres, Jose (1970). "Hereditary blindness among Pingelapese people of Eastern Caroline Islands". The Lancet. 295 (7659): 1253–1257. doi:10.1016/S0140-6736(70)91740-X.
  16. ^ Hussels 1972, pp. 304–309.
  17. ^ Sundin, Olof H.; Yang, Jun-Ming; Li, Yingying; Zhu, Danping; Hurd, Jane N.; Mitchell, Thomas N.; Silva, Eduardo D.; Maumenee, Irene Hussels (2000). "Genetic basis of total colourblindness among the Pingelapese islanders". Nature Genetics. 25 (3): 289–293. doi:10.1038/77162. PMID 10888875. S2CID 22948732. Retrieved 18 August 2022.
  18. ^ Morton 1972, pp. 277–289.
  19. ^ Sacks, Oliver W. (1997). The island of the colorblind; and Cycad island. New York: A.A. Knopf. OCLC 473230128. Retrieved 18 August 2022.
  20. ^ Bouvier, Seth E.; Engel, Stephen A. (2006-02-01). "Behavioral Deficits and Cortical Damage Loci in Cerebral Achromatopsia". Cerebral Cortex. 16 (2): 183–191. doi:10.1093/cercor/bhi096. ISSN 1460-2199. PMID 15858161.
  21. ^ Burns, Martha S. (2004). "Clinical Management of Agnosia". Topics in Stroke Rehabilitation. 11 (1): 1–9. doi:10.1310/N13K-YKYQ-3XX1-NFAV. ISSN 1074-9357. PMID 14872395.
  22. ^ Zeki, Semir (1990). "A century of cerebral achromatopsia". Brain. 113 (6): 1721–1777. doi:10.1093/brain/113.6.1721. ISSN 0006-8950. PMID 2276043.

Sources

Read other articles:

The Police of Serbia (bahasa Serbia : Полиција Србије, diromanisasi :  Policija Srbije), secara resmi Polisi Republik Serbia (bahasa Serbia : Полиција Републике Србије, diromanisasi :  Policija Republike Srbije), biasa disingkat Polisi Serbia (bahasa Serbia : Српска полиција, diromanisasi : Srpska policija), adalah kepolisian sipil nasional Republik Serbia. Polisi Serbia bertanggung jawab atas semua pen...

الرومانية الكاثوليكية في أيرلندا تعديل مصدري - تعديل   كنيسة فرنسيس كسفاريوس في دبلن. الكنيسة الكاثوليكية الإيرلندية هي جزء من الكنيسة الكاثوليكية العالمية في ظل القيادة الروحية للبابا في روما ومجلس الأساقفة الإيرلندا. واستنادًا إلى احصائيات أظهرت أنّ 87.4% من مواطني جمهو

German tennis player For other people named Martina Müller, see Martina Müller (disambiguation). Martina MüllerCountry (sports) GermanyResidenceSehndeBorn (1982-10-11) 11 October 1982 (age 41)Hanover, West GermanyHeight1.65 m (5 ft 5 in)Turned pro1999Retired2011PlaysRight-handed (two-handed backhand)Prize money$1,040,531SinglesCareer record288–255Career titles1 WTA, 10 ITFHighest rankingNo. 33 (2 April 2007)Grand Slam singles resultsAustr...

هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في النص الحالي. (ديسمبر 2021) هذه مقالة غير مراجعة. ينبغي أن يزال هذا القالب بعد أن يراجعها محرر مغاير للذي أن

Heidi Diethelm Gerber Medallista olímpica Datos personalesNombre de nacimiento Heidi DiethelmNacimiento Münsterlingen, Suiza20 de marzo de 1969 (54 años)Carrera deportivaRepresentante de Suiza SuizaDeporte Tiro               Medallero Tiro femenino Evento O P B Juegos Olímpicos 0 0 1 Juegos Europeos 1 1 0 Campeonato Europeo 2 1 1 [editar datos en Wikidata] Heidi Diethelm Gerber (nacida Heidi Diethelm...

American singer-songwriter Marissa NadlerMarissa Nadler in 2011Background informationBorn (1981-04-05) April 5, 1981 (age 42)Washington D.C., United StatesOriginMassachusetts, United StatesGenres Folk indie folk indie rock dream pop ambient black metal Americana Occupation(s)Musician, songwriter, fine artistInstrument(s)Guitar, piano, keyboardsYears active2000–presentLabelsEclipse Records, Beautiful Happiness, Peacefrog, Kemado, Box of Cedar, Sacred Bones, Bella UnionWebsitewww.marissa...

Municipio de Mill Municipio Municipio de MillUbicación en el condado de Baxter en Arkansas Ubicación de Arkansas en EE. UU.Coordenadas 36°23′33″N 92°13′44″O / 36.3925, -92.2289Entidad Municipio • País  Estados Unidos • Estado  Arkansas • Condado BaxterSuperficie   • Total 132.5 km² • Tierra 109.1 km² • Agua (17.66%) 23.39 km²Altitud   • Media 189 m s. n. m.Población (2010)  ...

American football player (born 1982) American football player Andy LeeLee with the Browns in 2015Personal informationBorn: (1982-08-11) August 11, 1982 (age 41)Westminster, South Carolina, U.S.Height:6 ft 1 in (1.85 m)Weight:185 lb (84 kg)Career informationHigh school:West-Oak (Westminster)College:Pittsburgh (2000–2003)Position:PunterNFL Draft:2004 / Round: 6 / Pick: 188Career history San Francisco 49ers (2004–2014) Cleveland Browns (2015)...

モルディブオリンピック委員会Maldives Olympic Committee モルディブオリンピック委員会Maldives Olympic Committeeのロゴ国/地域  モルディブコード MDV設立 1985年承認 1985年大陸連盟 OCA会長 モハメド・シャウィード[1]事務総長 アハメド・マルズーク(アラビア語版)[1]ウェブサイト www.nocmaldives.org (英語) モルディブオリンピック委員会(英語: Maldives Olympic Committee

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2016) يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. ...

American baseball player Baseball player Joe AyraultAyrault with the Wisconsin Timber Rattlers in 2023CatcherBorn: (1971-10-08) October 8, 1971 (age 52)Rochester, MichiganBatted: RightThrew: RightMLB debutSeptember 1, 1996, for the Atlanta BravesLast MLB appearanceSeptember 29, 1996, for the Atlanta BravesMLB statisticsBatting average.200Home runs0Runs batted in0 Teams Atlanta Braves (1996) Joseph Allen Ayrault (born October 8, 1971) is a former professional...

Le Barbier de SévilleSampul broser tahun 1904 yang mengiklankan film tersebutSutradara Georges Méliès ProduserDitulis olehBerdasarkanThe Barber of Sevilleoleh Pierre BeaumarchaisTanggal rilis1904Durasi22 menit[1]412 meters/1340 feet295 meters/960 feet (abridged)[2]Negara Prancis BahasaFilm bisu The Barber of Seville (Prancis: Le Barbier de Séville),[3] juga dirilis dengan judul The Barber of Sevilla, or the Useless Precaution,[2] adalah sebuah film bisu...

Historic house in Maine, United States United States historic placeLevi Sargent HouseU.S. National Register of Historic Places Show map of MaineShow map of the United StatesLocation747 Otisfield Gore Road, Otisfield, MaineCoordinates44°8′58″N 70°33′50″W / 44.14944°N 70.56389°W / 44.14944; -70.56389Area1 acre (0.40 ha)Builtc. 1812 (1812)ArchitectSargent, LeviArchitectural styleUnknownNRHP reference No.87000419[1]Added to NRHP...

King and sculptor in Greek mythology For other uses, see Pygmalion (disambiguation). Pygmalion Adoring His Statue by Jean Raoux, 1717 In Greek mythology, Pygmalion (/pɪɡˈmeɪliən/; Ancient Greek: Πυγμαλίων Pugmalíōn, gen.: Πυγμαλίωνος) was a legendary figure of Cyprus. He is most familiar from Ovid's narrative poem Metamorphoses, in which Pygmalion was a sculptor who fell in love with a statue he had carved. In Ovid In book 10 of Ovid's Metamorphoses, Pygmalion was a...

出典は列挙するだけでなく、脚注などを用いてどの記述の情報源であるかを明記してください。記事の信頼性向上にご協力をお願いいたします。(2017年8月) この項目には、一部のコンピュータや閲覧ソフトで表示できない文字が含まれています(詳細)。 この項目では、出口延経の『神名帳考証』について説明しています。伴信友の同名書については「神名帳考証土�...

Ecological theoryFree-ranging Longhorn cattle, stands of mature oaks in the distance, Knepp Wildland.According to the hypothesis, open wood-pasture like this one in Langå Egeskov, Jutland, Denmark comes close to a European virgin vegetation. The wood-pasture hypothesis (also known as the Vera hypothesis and the megaherbivore theory) is a scientific hypothesis positing that open and semi-open pastures and wood-pastures formed the predominant type of landscape in post-glacial temperate Europe,...

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Dharma Samudera Fishing Industries – berita · surat kabar · buku · cendekiawan · JSTOR artikel ini perlu dirapikan agar memenuhi standar Wikipedia. Tidak ada alasan yang diberikan. Silakan kembangkan art...

American futures exchange For other uses of Commodity Exchange, see Commodity exchange (disambiguation). For other uses of COMEX, see Comex (disambiguation). Not to be confused with NYNEX. 40°42′52″N 74°1′1″W / 40.71444°N 74.01694°W / 40.71444; -74.01694 New York Mercantile ExchangeTypeSubsidiary of the CME GroupFounded1882; 141 years ago (1882)HeadquartersOne North End AvenueManhattan, New York City, NY 10285United StatesWebsitewww.cmegro...

The Thin Executioner AuthorDarren ShanCountry IrelandLanguageEnglishGenreChildren's novel, Fantasy novel, dark comedy novel, adventure novelPublisherHarperCollinsPublication date29 April 2010Media typePrint (hardcover)Pages496 pp (first edition, hardback)ISBN0-00-73158-48 (first edition, hardback)OCLC464590174 The Thin Executioner is young adult and dark fantasy novel written by Irish playwright Darren O'Shaughnessy under the pen name of Darren Shan, published in April 2010. Inspired by ...

Vietnamese TV network This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: VTV6 – news · newspapers · books · scholar · JSTOR (August 2019) (Learn how and when to remove this template message) Television channel VTV6CountryVietnamBroadcast areaVietnamProgrammingLanguage(s)VietnamesePicture format1080i HDTVOwnersh...