300 (number)

← 299 300 301 →
Cardinalthree hundred
Ordinal300th
(three hundredth)
Factorization22 × 3 × 52
Greek numeralΤ´
Roman numeralCCC, ccc
Binary1001011002
Ternary1020103
Senary12206
Octal4548
Duodecimal21012
Hexadecimal12C16
Hebrewש
ArmenianՅ
Babylonian cuneiform𒐙
Egyptian hieroglyph𓍤

300 (three hundred) is the natural number following 299 and preceding 301.

In Mathematics

300 is a composite number and the 24th triangular number.[1]

Integers from 301 to 399

300s

301

302

303

304

305

306

307

308

309

310s

310

311

312

313

314

315

315 = 32 × 5 × 7 = , rencontres number, highly composite odd number, having 12 divisors.[2]

316

316 = 22 × 79, a centered triangular number[3] and a centered heptagonal number.[4]

317

317 is a prime number, Eisenstein prime with no imaginary part, Chen prime,[5] one of the rare primes to be both right and left-truncatable,[6] and a strictly non-palindromic number.

317 is the exponent (and number of ones) in the fourth base-10 repunit prime.[7]

318

319

319 = 11 × 29. 319 is the sum of three consecutive primes (103 + 107 + 109), Smith number,[8] cannot be represented as the sum of fewer than 19 fourth powers, happy number in base 10[9]

320s

320

320 = 26 × 5 = (25) × (2 × 5). 320 is a Leyland number,[10] and maximum determinant of a 10 by 10 matrix of zeros and ones.

321

321 = 3 × 107, a Delannoy number[11]

322

322 = 2 × 7 × 23. 322 is a sphenic,[12] nontotient, untouchable,[13] and a Lucas number.[14] It is also the first unprimeable number to end in 2.

323

323 = 17 × 19. 323 is the sum of nine consecutive primes (19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53), the sum of the 13 consecutive primes (5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47), Motzkin number.[15] A Lucas and Fibonacci pseudoprime. See 323 (disambiguation)

324

324 = 22 × 34 = 182. 324 is the sum of four consecutive primes (73 + 79 + 83 + 89), totient sum of the first 32 integers, a square number,[16] and an untouchable number.[13]

325

326

326 = 2 × 163. 326 is a nontotient, noncototient,[17] and an untouchable number.[13] 326 is the sum of the 14 consecutive primes (3 + 5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47), lazy caterer number[18]

327

327 = 3 × 109. 327 is a perfect totient number,[19] number of compositions of 10 whose run-lengths are either weakly increasing or weakly decreasing[20]

328

328 = 23 × 41. 328 is a refactorable number,[21] and it is the sum of the first fifteen primes (2 + 3 + 5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47).

329

329 = 7 × 47. 329 is the sum of three consecutive primes (107 + 109 + 113), and a highly cototient number.[22]

330s

330

330 = 2 × 3 × 5 × 11. 330 is sum of six consecutive primes (43 + 47 + 53 + 59 + 61 + 67), pentatope number (and hence a binomial coefficient ), a pentagonal number,[23] divisible by the number of primes below it, and a sparsely totient number.[24]

331

331 is a prime number, super-prime, cuban prime,[25] a lucky prime,[26] sum of five consecutive primes (59 + 61 + 67 + 71 + 73), centered pentagonal number,[27] centered hexagonal number,[28] and Mertens function returns 0.[29]

332

332 = 22 × 83, Mertens function returns 0.[29]

333

333 = 32 × 37, Mertens function returns 0;[29] repdigit; 2333 is the smallest power of two greater than a googol.

334

334 = 2 × 167, nontotient.[30]

335

335 = 5 × 67. 335 is divisible by the number of primes below it, number of Lyndon words of length 12.

336

336 = 24 × 3 × 7, untouchable number,[13] number of partitions of 41 into prime parts,[31] largely composite number.[32]

337

337, prime number, emirp, permutable prime with 373 and 733, Chen prime,[5] star number

338

338 = 2 × 132, nontotient, number of square (0,1)-matrices without zero rows and with exactly 4 entries equal to 1.[33]

339

339 = 3 × 113, Ulam number[34]

340s

340

340 = 22 × 5 × 17, sum of eight consecutive primes (29 + 31 + 37 + 41 + 43 + 47 + 53 + 59), sum of ten consecutive primes (17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53), sum of the first four powers of 4 (41 + 42 + 43 + 44), divisible by the number of primes below it, nontotient, noncototient.[17] Number of regions formed by drawing the line segments connecting any two of the 12 perimeter points of a 3 times 3 grid of squares (sequence A331452 in the OEIS) and (sequence A255011 in the OEIS).

341

342

342 = 2 × 32 × 19, pronic number,[35] Untouchable number.[13]

343

343 = 73, the first nice Friedman number that is composite since 343 = (3 + 4)3. It is the only known example of x2+x+1 = y3, in this case, x=18, y=7. It is z3 in a triplet (x,y,z) such that x5 + y2 = z3.

344

344 = 23 × 43, octahedral number,[36] noncototient,[17] totient sum of the first 33 integers, refactorable number.[21]

345

345 = 3 × 5 × 23, sphenic number,[12] idoneal number

346

346 = 2 × 173, Smith number,[8] noncototient.[17]

347

347 is a prime number, emirp, safe prime,[37] Eisenstein prime with no imaginary part, Chen prime,[5] Friedman prime since 347 = 73 + 4, twin prime with 349, and a strictly non-palindromic number.

348

348 = 22 × 3 × 29, sum of four consecutive primes (79 + 83 + 89 + 97), refactorable number.[21]

349

349, prime number, twin prime, lucky prime, sum of three consecutive primes (109 + 113 + 127), 5349 - 4349 is a prime number.[38]

350s

350

350 = 2 × 52 × 7 = , primitive semiperfect number,[39] divisible by the number of primes below it, nontotient, a truncated icosahedron of frequency 6 has 350 hexagonal faces and 12 pentagonal faces.

351

351 = 33 × 13, 26th triangular number,[40] sum of five consecutive primes (61 + 67 + 71 + 73 + 79), member of Padovan sequence[41] and number of compositions of 15 into distinct parts.[42]

352

352 = 25 × 11, the number of n-Queens Problem solutions for n = 9. It is the sum of two consecutive primes (173 + 179), lazy caterer number[18]

353

354

354 = 2 × 3 × 59 = 14 + 24 + 34 + 44,[43][44] sphenic number,[12] nontotient, also SMTP code meaning start of mail input. It is also sum of absolute value of the coefficients of Conway's polynomial.

355

355 = 5 × 71, Smith number,[8] Mertens function returns 0,[29] divisible by the number of primes below it.[45] The cototient of 355 is 75,[46] where 75 is the product of its digits (3 x 5 x 5 = 75).

The numerator of the best simplified rational approximation of pi having a denominator of four digits or fewer. This fraction (355/113) is known as Milü and provides an extremely accurate approximation for pi, being accurate to seven digits.

356

356 = 22 × 89, Mertens function returns 0.[29]

357

357 = 3 × 7 × 17, sphenic number.[12]

358

358 = 2 × 179, sum of six consecutive primes (47 + 53 + 59 + 61 + 67 + 71), Mertens function returns 0,[29] number of ways to partition {1,2,3,4,5} and then partition each cell (block) into subcells.[47]

359

360s

360

361

361 = 192. 361 is a centered triangular number,[3] centered octagonal number, centered decagonal number,[48] member of the Mian–Chowla sequence;[49] also the number of positions on a standard 19 x 19 Go board.

362

362 = 2 × 181 = σ2(19): sum of squares of divisors of 19,[50] Mertens function returns 0,[29] nontotient, noncototient.[17]

363

364

364 = 22 × 7 × 13, tetrahedral number,[51] sum of twelve consecutive primes (11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53), Mertens function returns 0,[29] nontotient. It is a repdigit in base 3 (111111), base 9 (444), base 25 (EE), base 27 (DD), base 51 (77) and base 90 (44), the sum of six consecutive powers of 3 (1 + 3 + 9 + 27 + 81 + 243), and because it is the twelfth non-zero tetrahedral number.[51]

365

366

366 = 2 × 3 × 61, sphenic number,[12] Mertens function returns 0,[29] noncototient,[17] number of complete partitions of 20,[52] 26-gonal and 123-gonal. Also the number of days in a leap year.

367

367 is a prime number, a lucky prime,[26] Perrin number,[53] happy number, prime index prime and a strictly non-palindromic number.

368

368 = 24 × 23. It is also a Leyland number.[10]

369

370s

370

370 = 2 × 5 × 37, sphenic number,[12] sum of four consecutive primes (83 + 89 + 97 + 101), nontotient, with 369 part of a Ruth–Aaron pair with only distinct prime factors counted, Base 10 Armstrong number since 33 + 73 + 03 = 370.

371

371 = 7 × 53, sum of three consecutive primes (113 + 127 + 131), sum of seven consecutive primes (41 + 43 + 47 + 53 + 59 + 61 + 67), sum of the primes from its least to its greatest prime factor,[54] the next such composite number is 2935561623745, Armstrong number since 33 + 73 + 13 = 371.

372

372 = 22 × 3 × 31, sum of eight consecutive primes (31 + 37 + 41 + 43 + 47 + 53 + 59 + 61), noncototient,[17] untouchable number,[13] --> refactorable number.[21]

373

373, prime number, balanced prime,[55] one of the rare primes to be both right and left-truncatable (two-sided prime),[6] sum of five consecutive primes (67 + 71 + 73 + 79 + 83), sexy prime with 367 and 379, permutable prime with 337 and 733, palindromic prime in 3 consecutive bases: 5658 = 4549 = 37310 and also in base 4: 113114.

374

374 = 2 × 11 × 17, sphenic number,[12] nontotient, 3744 + 1 is prime.[56]

375

375 = 3 × 53, number of regions in regular 11-gon with all diagonals drawn.[57]

376

376 = 23 × 47, pentagonal number,[23] 1-automorphic number,[58] nontotient, refactorable number.[21] There is a math puzzle in which when 376 is squared, 376 is also the last three digits, as 376 * 376 = 141376 [59] It is one of the two three-digit numbers where when squared, the last three digits remain the same.

377

377 = 13 × 29, Fibonacci number, a centered octahedral number,[60] a Lucas and Fibonacci pseudoprime, the sum of the squares of the first six primes.

378

378 = 2 × 33 × 7, 27th triangular number,[61] cake number,[62] hexagonal number,[63] Smith number.[8]

379

379 is a prime number, Chen prime,[5] lazy caterer number[18] and a happy number in base 10. It is the sum of the first 15 odd primes (3 + 5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53). 379! - 1 is prime.

380s

380

380 = 22 × 5 × 19, pronic number,[35] number of regions into which a figure made up of a row of 6 adjacent congruent rectangles is divided upon drawing diagonals of all possible rectangles.[64]

381

381 = 3 × 127, palindromic in base 2 and base 8.

381 is the sum of the first 16 prime numbers (2 + 3 + 5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53).

382

382 = 2 × 191, sum of ten consecutive primes (19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53 + 59), Smith number.[8]

383

383, prime number, safe prime,[37] Woodall prime,[65] Thabit number, Eisenstein prime with no imaginary part, palindromic prime. It is also the first number where the sum of a prime and the reversal of the prime is also a prime.[66] 4383 - 3383 is prime.

384

385

385 = 5 × 7 × 11, sphenic number,[12] square pyramidal number,[67] the number of integer partitions of 18.

385 = 102 + 92 + 82 + 72 + 62 + 52 + 42 + 32 + 22 + 12

386

386 = 2 × 193, nontotient, noncototient,[17] centered heptagonal number,[4] number of surface points on a cube with edge-length 9.[68]

387

387 = 32 × 43, number of graphical partitions of 22.[69]

388

388 = 22 × 97 = solution to postage stamp problem with 6 stamps and 6 denominations,[70] number of uniform rooted trees with 10 nodes.[71]

389

389, prime number, emirp, Eisenstein prime with no imaginary part, Chen prime,[5] highly cototient number,[22] strictly non-palindromic number. Smallest conductor of a rank 2 Elliptic curve.

390s

390

390 = 2 × 3 × 5 × 13, sum of four consecutive primes (89 + 97 + 101 + 103), nontotient,

is prime[72]

391

391 = 17 × 23, Smith number,[8] centered pentagonal number.[27]

392

392 = 23 × 72, Achilles number.

393

393 = 3 × 131, Blum integer, Mertens function returns 0.[29]

394

394 = 2 × 197 = S5 a Schröder number,[73] nontotient, noncototient.[17]

395

395 = 5 × 79, sum of three consecutive primes (127 + 131 + 137), sum of five consecutive primes (71 + 73 + 79 + 83 + 89), number of (unordered, unlabeled) rooted trimmed trees with 11 nodes.[74]

396

396 = 22 × 32 × 11, sum of twin primes (197 + 199), totient sum of the first 36 integers, refactorable number,[21] Harshad number, digit-reassembly number.

397

397, prime number, cuban prime,[25] centered hexagonal number.[28]

398

398 = 2 × 199, nontotient.

is prime[72]

399

399 = 3 × 7 × 19, sphenic number,[12] smallest Lucas–Carmichael number, and a Leyland number of the second kind[75] (). 399! + 1 is prime.

References

  1. ^ "A000217 - OEIS". oeis.org. Retrieved 2024-11-28.
  2. ^ Sloane, N. J. A. (ed.). "Sequence A053624 (Highly composite odd numbers (1): where d(n) increases to a record)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  3. ^ a b Sloane, N. J. A. (ed.). "Sequence A005448 (Centered triangular numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  4. ^ a b Sloane, N. J. A. (ed.). "Sequence A069099 (Centered heptagonal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  5. ^ a b c d e Sloane, N. J. A. (ed.). "Sequence A109611 (Chen primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  6. ^ a b Sloane, N. J. A. (ed.). "Sequence A020994 (Primes that are both left-truncatable and right-truncatable)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  7. ^ Guy, Richard; Unsolved Problems in Number Theory, p. 7 ISBN 1475717385
  8. ^ a b c d e f Sloane, N. J. A. (ed.). "Sequence A006753 (Smith numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  9. ^ Sloane, N. J. A. (ed.). "Sequence A007770 (Happy numbers: numbers whose trajectory under iteration of sum of squares of digits map (see A003132) includes 1)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  10. ^ a b Sloane, N. J. A. (ed.). "Sequence A076980 (Leyland numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  11. ^ Sloane, N. J. A. (ed.). "Sequence A001850 (Central Delannoy numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  12. ^ a b c d e f g h i Sloane, N. J. A. (ed.). "Sequence A007304 (Sphenic numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  13. ^ a b c d e f Sloane, N. J. A. (ed.). "Sequence A005114 (Untouchable numbers, also called nonaliquot numbers: impossible values for the sum of aliquot parts function)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  14. ^ Sloane, N. J. A. (ed.). "Sequence A000032 (Lucas numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  15. ^ Sloane, N. J. A. (ed.). "Sequence A001006 (Motzkin numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  16. ^ Sloane, N. J. A. (ed.). "Sequence A000290 (The squares: a(n) = n^2)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  17. ^ a b c d e f g h i Sloane, N. J. A. (ed.). "Sequence A005278 (Noncototients)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  18. ^ a b c Sloane, N. J. A. (ed.). "Sequence A000124 (Central polygonal numbers (the Lazy Caterer's sequence): n(n+1)/2 + 1; or, maximal number of pieces formed when slicing a pancake with n cuts)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  19. ^ Sloane, N. J. A. (ed.). "Sequence A082897 (Perfect totient numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  20. ^ Sloane, N. J. A. (ed.). "Sequence A332835 (Number of compositions of n whose run-lengths are either weakly increasing or weakly decreasing)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  21. ^ a b c d e f Sloane, N. J. A. (ed.). "Sequence A033950 (Refactorable numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  22. ^ a b Sloane, N. J. A. (ed.). "Sequence A100827 (Highly cototient numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  23. ^ a b Sloane, N. J. A. (ed.). "Sequence A000326 (Pentagonal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  24. ^ Sloane, N. J. A. (ed.). "Sequence A036913 (Sparsely totient numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  25. ^ a b Sloane, N. J. A. (ed.). "Sequence A002407 (Cuban primes: primes which are the difference of two consecutive cubes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  26. ^ a b Sloane, N. J. A. (ed.). "Sequence A031157 (Numbers that are both lucky and prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  27. ^ a b Sloane, N. J. A. (ed.). "Sequence A005891 (Centered pentagonal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  28. ^ a b Sloane, N. J. A. (ed.). "Sequence A003215 (Hex numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  29. ^ a b c d e f g h i j Sloane, N. J. A. (ed.). "Sequence A028442 (Numbers n such that Mertens' function is zero)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  30. ^ Sloane, N. J. A. (ed.). "Sequence A003052 (Self numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  31. ^ Sloane, N. J. A. (ed.). "Sequence A000607 (Number of partitions of n into prime parts)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  32. ^ Sloane, N. J. A. (ed.). "Sequence A067128 (Ramanujan's largely composite numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  33. ^ Sloane, N. J. A. (ed.). "Sequence A122400 (Number of square (0,1)-matrices without zero rows and with exactly n entries equal to 1)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  34. ^ Sloane, N. J. A. (ed.). "Sequence A002858 (Ulam numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  35. ^ a b Sloane, N. J. A. (ed.). "Sequence A002378 (Oblong (or promic, pronic, or heteromecic) numbers: a(n) = n*(n+1))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  36. ^ Sloane, N. J. A. (ed.). "Sequence A005900 (Octahedral numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  37. ^ a b Sloane, N. J. A. (ed.). "Sequence A005385 (Safe primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  38. ^ Sloane, N. J. A. (ed.). "Sequence A059802 (Numbers k such that 5^k - 4^k is prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  39. ^ Sloane, N. J. A. (ed.). "Sequence A006036 (Primitive pseudoperfect numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  40. ^ "A000217 - OEIS". oeis.org. Retrieved 2024-11-28.
  41. ^ Sloane, N. J. A. (ed.). "Sequence A000931 (Padovan sequence)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  42. ^ Sloane, N. J. A. (ed.). "Sequence A032020 (Number of compositions (ordered partitions) of n into distinct parts)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  43. ^ Sloane, N. J. A. (ed.). "Sequence A000538 (Sum of fourth powers: 0^4 + 1^4 + ... + n^4)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  44. ^ Sloane, N. J. A. (ed.). "Sequence A031971 (a(n) = Sum_{k=1..n} k^n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  45. ^ "A057809 - OEIS". oeis.org. Retrieved 2024-11-19.
  46. ^ "A051953 - OEIS". oeis.org. Retrieved 2024-11-19.
  47. ^ Sloane, N. J. A. (ed.). "Sequence A000258 (Expansion of e.g.f. exp(exp(exp(x)-1)-1))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  48. ^ Sloane, N. J. A. (ed.). "Sequence A062786 (Centered 10-gonal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  49. ^ Sloane, N. J. A. (ed.). "Sequence A005282 (Mian-Chowla sequence)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  50. ^ Sloane, N. J. A. (ed.). "Sequence A001157 (a(n) = sigma_2(n): sum of squares of divisors of n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  51. ^ a b Sloane, N. J. A. (ed.). "Sequence A000292 (Tetrahedral numbers (or triangular pyramidal))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  52. ^ Sloane, N. J. A. (ed.). "Sequence A126796 (Number of complete partitions of n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  53. ^ Sloane, N. J. A. (ed.). "Sequence A001608 (Perrin sequence)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  54. ^ Sloane, N. J. A. (ed.). "Sequence A055233 (Composite numbers equal to the sum of the primes from their smallest prime factor to their largest prime factor)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  55. ^ Sloane, N. J. A. (ed.). "Sequence A006562 (Balanced primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  56. ^ Sloane, N. J. A. (ed.). "Sequence A000068 (Numbers k such that k^4 + 1 is prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  57. ^ Sloane, N. J. A. (ed.). "Sequence A007678 (Number of regions in regular n-gon with all diagonals drawn)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  58. ^ Sloane, N. J. A. (ed.). "Sequence A003226 (Automorphic numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  59. ^ "Algebra COW Puzzle - Solution". Archived from the original on 2023-10-19. Retrieved 2023-09-21.
  60. ^ Sloane, N. J. A. (ed.). "Sequence A001845 (Centered octahedral numbers (crystal ball sequence for cubic lattice))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  61. ^ "A000217 - OEIS". oeis.org. Retrieved 2024-11-28.
  62. ^ "A000217 - OEIS". oeis.org. Retrieved 2024-11-28.
  63. ^ Sloane, N. J. A. (ed.). "Sequence A000384 (Hexagonal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  64. ^ Sloane, N. J. A. (ed.). "Sequence A306302 (Number of regions into which a figure made up of a row of n adjacent congruent rectangles is divided upon drawing diagonals of all possible rectangles)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  65. ^ Sloane, N. J. A. (ed.). "Sequence A050918 (Woodall primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  66. ^ Sloane, N. J. A. (ed.). "Sequence A072385 (Primes which can be represented as the sum of a prime and its reverse)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  67. ^ Sloane, N. J. A. (ed.). "Sequence A000330 (Square pyramidal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  68. ^ Sloane, N. J. A. (ed.). "Sequence A005897 (a(n) = 6*n^2 + 2 for n > 0, a(0)=1)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  69. ^ Sloane, N. J. A. (ed.). "Sequence A000569 (Number of graphical partitions of 2n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  70. ^ Sloane, N. J. A. (ed.). "Sequence A084192 (Array read by antidiagonals: T(n,k) = solution to postage stamp problem with n stamps and k denominations (n >= 1, k >= 1))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  71. ^ Sloane, N. J. A. (ed.). "Sequence A317712 (Number of uniform rooted trees with n nodes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  72. ^ a b Sloane, N. J. A. (ed.). "Sequence A162862 (Numbers n such that n^10 + n^9 + n^8 + n^7 + n^6 + n^5 + n^4 + n^3 + n^2 + n + 1 is prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  73. ^ Sloane, N. J. A. (ed.). "Sequence A006318 (Large Schröder numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  74. ^ Sloane, N. J. A. (ed.). "Sequence A002955 (Number of (unordered, unlabeled) rooted trimmed trees with n nodes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  75. ^ Sloane, N. J. A. (ed.). "Sequence A045575 (Leyland numbers of the second kind)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.

Read other articles:

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Kendaraan jalan raya–rel – berita · surat kabar · buku · cendekiawan · JSTOR Kendaraan jalan raya–rel merujuk untuk semua kendaraan jalan biasa (dari sepeda onthel, motor, mobil, sampai truk) yang bi...

 

Makam Adji Pangeran Mangkunegoro di kawasan Gunung Malau, Tenggarong. Adji Pangeran Mangkunegoro adalah putra ketiga dari Sultan Aji Muhammad Sulaiman dan Sang Nata Adji Soja Binti Adji Raga gelar Adji Pangeran Sri Bangun II Bin Adji Pangeran Amjah Mas Aria Gelar Adji Pangeran Sri Bangun I Bin Sultan Adji Muhammad Idris. Terlahir dengan nama Adji Amiddin, beliau pernah menjabat sebagai Menteri Negara dengan gelar Adji Pangeran Sasranegara dan Ketua Dewan Perwalian Kesultanan Kutai Kertanegara...

 

United States historic placeBreckinridge MillU.S. National Register of Historic PlacesVirginia Landmarks Register Northern sideShow map of VirginiaShow map of the United StatesLocationW of Fincastle on VA 600, 7850 Breckinridge Mill Rd., near Fincastle, VirginiaCoordinates37°29′55″N 79°54′40″W / 37.49861°N 79.91111°W / 37.49861; -79.91111Area4.4 acres (1.8 ha)Built1822 (1822), 1900Architectural styleQueen AnneNRHP reference No.80004...

كأس البوسنة والهرسك 2016–17 تفاصيل الموسم كأس البوسنة والهرسك  النسخة 17ª (23ª in totale)  البلد البوسنة والهرسك  التاريخ بداية:21 سبتمبر 2016  نهاية:17 مايو 2017  المنظم اتحاد البوسنة والهرسك لكرة القدم  البطل نادي شيروكي برييغ  مباريات ملعوبة 46   عدد المشاركين 32   �...

 

Le type M (ou classe M) est un type d'astéroïdes qui apparait dans la classification spectrale de Tholen (1984) dans laquelle il appartient au « groupe X », en proximité avec les types E et P desquels il n'est distingué que par l'albédo. Il n'apparait plus dans les classifications ultérieures de Bus (ou SMASS-II) (1999) et de Bus-DeMeo (2009) dans lesquelles la subdivision du groupe X (ou complexe X) est très différente. À fin 2023, la base de données « Small-Body ...

 

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт�...

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт�...

 

Angelo Raffaele Nolè Nazionalità  Italia Altezza 177 cm Peso 70 kg Calcio Ruolo Attaccante, centrocampista Squadra  FC Francavilla Carriera Giovanili 1994-2001 Potenza Squadre di club1 2000-2007 Potenza162 (42)[1]2007-2008 Messina7 (0)2008-2009 Potenza28 (4)2009-2010 Rimini23 (8)[2]2010-2014 Ternana98 (20)[3]2014-2015 Bassano Virtus31 (10)[4]2015-2017 Reggiana41 (7)2017 Modena16 (3)2017-2018 Racing ...

 

Skyscraper hotel in Jakarta, Indonesia The Ritz-Carlton JakartaRitz-Carlton Jakarta at night, 2019Location in JakartaGeneral informationLocationMega Kuningan, South Jakarta, IndonesiaAddressLingkar Mega Kuningan Street, Kav. E 1.1 No. 1, JakartaCoordinates6°13′43″S 106°49′37.7″E / 6.22861°S 106.827139°E / -6.22861; 106.827139Opening2005OwnerRitz-CarltonHeight212 mTechnical detailsFloor count48Floor area140,000 m2Design and constructionDeveloperPT Mutiara Pe...

Questa voce sugli argomenti registi e attori è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti dei progetti di riferimento 1, 2. Baltasar Kormákur nel 2022. Baltasar Kormákur (Reykjavík, 27 febbraio 1966) è un attore, regista, sceneggiatore e produttore cinematografico islandese. Attivo in ambito cinematografico, televisivo e teatrale, è considerato uno dei cineasti più acclamati della nuova generazione[1], nonché vin...

 

1985 album Who's MissingCompilation album by the WhoReleased30 November 1985 (1985-11-30)Recorded1965–1971GenreRockLength41:07LabelPolydor (UK)MCA (US)The Who chronology The Who Collection(1985) Who's Missing(1985) Two's Missing(1987) Who's Missing is a compilation of rare and previously unreleased songs by the English rock band the Who.[1] Its second part, Two's Missing, was released on 11 April 1987. The CD was reissued in Japan on 24 December 2011 with addition...

 

American television series Wahl StreetGenreReality televisionCreated by Mark Wahlberg Stephen Levinson Archie Gips Country of originUnited StatesOriginal languageEnglishNo. of seasons2No. of episodes16ProductionExecutive producers Mark Wahlberg Stephen Levinson Archie Gips Sarah Skibitzke Liz Bronstein James Wahlberg Production locations Los Angeles, California New York, New York Las Vegas, Nevada Running time21–26 minutesProduction companyUnrealistic IdeasOriginal releaseNetworkHBO MaxRele...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Guangshui – news · newspapers · books · scholar · JSTOR (June 2018) (Learn how and when to remove this message) County-level city in Hubei, People's Republic of ChinaGuangshui 广水市KwangshuiCounty-level cityGuangshuiLocation in HubeiCoordinates: 31°37′01...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يناير 2014) الشريط الساحلي قرية فقم الساحلية قرية بير فقم  - حي -  قرية بير فقمالعلم الرسمي تقسيم إداري البلد  اليمن المحافظة محافظة عدن المديرية مديرية البر...

 

ملعب لينيتيمعلومات عامةالمنطقة الإدارية فيكتوريا البلد  سيشل التشييد والافتتاحالافتتاح الرسمي 2008 الاستعمالالرياضة كرة القدم المستضيف منتخب سيشل لكرة القدم معلومات أخرىالطاقة الاستيعابية 10٬000 الموقع الجغرافيالإحداثيات 4°38′08″S 55°28′14″E / 4.6355°S 55.4705°E / -4.63...

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: マヨルカ王国 – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2023年5月) マヨルカ王国 Regne de Mallorca  (カタロ�...

 

Indigenous Australian children forcibly acculturated into White Australian society Stolen Children redirects here. For other uses, see Stolen Children (disambiguation). A portrayal entitled The Taking of the Children on the 1999 Great Australian Clock, Queen Victoria Building, Sydney, by artist Chris Cooke The Stolen Generations (also known as Stolen Children) were the children of Australian Aboriginal and Torres Strait Islander descent who were removed from their families by the Australian f...

 

Criminal law Elements Actus reus Mens rea Causation Concurrence Scope of criminal liability Accessory Accomplice Complicity Corporate Principal Vicarious Severity of offense Felony (or Indictable offense) Infraction (also called violation) Misdemeanor (or Summary offense) Inchoate offenses Attempt Conspiracy Incitement Solicitation Offense against the person Assassination Assault Battery Child abuse Criminal negligence Defamation Domestic violence False imprisonment Frameup Harassment Home in...

Pour les articles homonymes, voir Baulne-en-Brie. Baulne L’hôtel de ville. Blason Administration Pays France Région Île-de-France Département Essonne Arrondissement Étampes Intercommunalité CC du Val d'Essonne Maire Mandat Xavier Guilbert 2023-2026 Code postal 91590 Code commune 91047 Démographie Gentilé Baulnois Populationmunicipale 1 416 hab. (2021 ) Densité 173 hab./km2 Géographie Coordonnées 48° 29′ 32″ nord, 2° 21′ 35″ ...

 

Place in Sudogwon, South KoreaChangsin-dongKorean transcription(s) • Hangul창신동 • Hanja昌信洞 • Revised RomanizationChangsin dong • McCune–ReischauerCh'angsin tongCoordinates: 37°34′30″N 127°00′43″E / 37.575°N 127.012°E / 37.575; 127.012CountrySouth KoreaRegionSudogwonSpecial CitySeoulDistrictJongnoArea • Total0.80 km2 (0.31 sq mi)Population (2001)[1] ...