Στα μαθηματικά, η εξίσωση Όιλερ–Τρικόμι είναι μία γραμμική μερική διαφορική εξίσωση, χρήσιμη στην μελέτη της διηχητικής ροής. Πήρε το όνομά της απ' τους Λέοναρντ Όιλερ και Φρανσέσκο Τζιάκομο Τρικόμι.
Είναι ελλειπτική στο ημιεπίπεδο x > 0, παραβολική στο x = 0 και υπερβολική στο ημιεπίπεδο x < 0. Οι χαρακτηριστικές της εξισώσεις είναι
που έχουν ολοκλήρωμα
όπου C είναι μια σταθερά της ολοκλήρωσης. Οι χαρακτηριστικές αποτελούν δύο οικογένειες ημικυβικών παραβολών, με ακμές στη γραμμή x = 0, οι καμπύλες ορίζονται στη δεξιά πλευρά του y-άξονα.
Ιδιαίτερες λύσεις
Ιδιαίτερες λύσεις για την εξίσωση Όιλερ–Τρικόμι αποτελούν οι
όπου A, B, C, D είναι τυχαίες σταθερές.
Η εξίσωση Όιλερ–Τρικόμι είναι μια περιοριστική μορφή της εξίσωσης του Τσάπλιγκιν.
Βιβλιογραφία
- A. D. Polyanin, Handbook of Linear Partial Differential Equations for Engineers and Scientists, Chapman & Hall/CRC Press, 2002.
Εξωτερικοί σύνδεσμοι