Διακριτά μαθηματικά ονομάζεται η μελέτη μαθηματικών δομών που είναι θεμελιωδώς διακριτές αντί για συνεχείς. Σε αντίθεση με τους πραγματικούς αριθμούς που έχουν την ιδιότητα να "μεταβάλλονται ομαλά", τα αντικείμενα που μελετώνται στα διακριτά μαθηματικά - όπως οι ακέραιοι, οι γράφοι και οι προτάσεις της λογικής[1] – δεν μεταβάλλονται ομαλά κατά αυτόν τον τρόπο, αλλά έχουν ξεχωριστές, διακριτές τιμές.[2] Τα διακριτά μαθηματικά επομένως αποκλείουν θέματα των "συνεχών μαθηματικών", όπως ο απειροστικός λογισμός και η ανάλυση. Συχνά τα διακριτά αντικείμενα μπορούν να απαριθμηθούν με βάση τους ακέραιους. Τυπικότερα, τα διακριτά μαθηματικά έχουν χαρακτηριστεί ως ο κλάδος των μαθηματικών που ασχολείται με αριθμήσιμα σύνολα[3] (σύνολα που έχουν την ίδια πληθικότητα με τα υποσύνολα των φυσικών αριθμών, συμπεριλαμβανομένων των ρητών αριθμών αλλά όχι και των πραγματικών αριθμών). Όμως, δεν υπάρχει κάποιος ακριβής και καθολικά αποδεκτός ορισμός του όρου "διακριτά μαθηματικά."[4] Στην πράξη τα διακριτά μαθηματικά περιγράφονται λιγότερο από το τι περιέχουν και περισσότερο με βάση τι δεν περιέχουν: συνεχείς μεταβλητές και σχετικές με αυτές έννοιες.
Το σύνολο των αντικειμένων που μελετώνται στα διακριτά μαθηματικά μπορεί να είναι πεπερασμένο ή άπειρο. Συχνά χρησιμοποιείται ο όρος πεπερασμένα μαθηματικά για μέρη του πεδίου των διακριτών μαθηματικών που ασχολούνται με πεπερασμένα σύνολα, και ειδικότερα όταν αυτό έχει σχέση με εφαρμογές στο χώρο των επιχειρήσεων.
Η έρευνα στα διακριτά μαθηματικά αναπτύχθηκε πολύ γρήγορα στο δεύτερο μισό του εικοστού αιώνα, εν μέρει λόγω της ανάπτυξης των ψηφιακών υπολογιστών, οι οποίοι λειτουργούν σε διακριτά βήματα και αποθηκεύουν τα δεδομένα τους σε διακριτά bits. Οι έννοιες και ο μαθηματικός συμβολισμός των διακριτών μαθηματικών χρησιμεύουν στη μελέτη και την περιγραφή αντικειμένων και προβλημάτων διάφορων κλάδων της επιστήμης υπολογιστών, όπως οι υπολογιστικοί αλγόριθμοι, οι γλώσσες προγραμματισμού, η κρυπτογραφία, η αυτοματοποιημένη απόδειξη θεωρημάτων και η ανάπτυξη λογισμικού. Από την άλλη πλευρά, υλοποιήσεις σε υπολογιστές εφαρμόζουν τις ιδέες των διακριτών μαθηματικών σε πραγματικά προβλήματα, όπως στην επιχειρησιακή έρευνα.
Αν και τα βασικά αντικείμενα που μελετώνται στα διακριτά μαθηματικά είναι διακριτά αντικείμενα, για την απόδειξη θεωρημάτων κάποιες φορές χρησιμοποιούνται συναρτήσεις και ιδιότητες των πραγματικών ή ακόμη και των μιγαδικών αριθμών.
Οι μεγάλες προκλήσεις, παρελθόν και παρόν
Η ιστορία των διακριτών μαθηματικών περιέχει αρκετά προβλήματα-προκλήσεις που εστίασαν σε συγκεκριμένες περιοχές του πεδίου. Στη θεωρία γράφων, σημαντική έρευνα ασχολήθηκε με προσπάθειες να αποδειχτεί το θεώρημα των τεσσάρων χρωμάτων, το οποίο αρχικά διατυπώθηκε το 1852, αλλά δεν αποδείχτηκε μέχρι το 1976 (από τον Kenneth Appel και τον Wolfgang Haken, χρησιμοποιώντας αρκετή υπολογιστική βοήθεια).[5]
Το 1900, ο Γερμανός μαθηματικός Ντάβιντ Χίλμπερτ πρότεινε μια σειρά ανοικτών ερωτημάτων ως τις σημαντικότερες προκλήσεις στα μαθηματικά για την εποχή του. Αυτή είναι τα λεγόμενα προβλήματα του Χίλμπερτ, πολλά από τα οποία έχουν μέχρι σήμερα επιλυθεί. Σε αυτά περιλαμβάνονται και προβλήματα από τα διακριτά μαθηματικά όπως το δεύτερο πρόβλημα το οποίο ρωτάει αν τα αξιώματα της αριθμητικής Πεάνο, αριθμητικής πάνω στους φυσικούς αριθμούς, είναι συνεπή. Ο επίσης Γερμανός Κουρτ Γκέντελ απέδειξε το 1931 με το δεύτερο θεώρημα μη-πληρότητας ότι αυτό δεν ισχύει. Ένα άλλο διάσημο πρόβλημα από τα διακριτά μαθηματικά είναι το δέκατο πρόβλημα του Χίλμπερτ το οποίο ζητούσε να βρεθεί μια γενική διαδικασία που θα μπορεί να ελέγχει αν μια οποιαδήποτε διοφαντική εξίσωση είναι επιλύσιμη. Διοφαντική εξίσωση λέγεται γενικώς ένα σύστημα πολυωνύμων με ακέραιους συντελεστές, ορισμένο στο σύνολο των ακεραίων. Το 1970 ο Yuri Matiyasevich απέδειξε ότι μια τέτοια διαδικασία δεν υπάρχει. Τα παραπάνω είναι ενδεικτικά της δυσκολίας και πολυπλοκότητας που μπορεί να συναντήσει κανείς προσπαθώντας να επιλύσει προβλήματα διακριτών μαθηματικών.
Αρκετά πεδία των διακριτών μαθηματικών, ειδικά η θεωρητική πληροφορική, η θεωρία γράφων και η συνδυαστική, είναι σημαντικά για την αντιμετώπιση δύσκολων προβλημάτων βιοπληροφορικής σχετικά με τη φυλογενετική ταξινόμηση.[6]
Σήμερα, ένα από τα πιο διάσημα ανοιχτά προβλήματα της θεωρητικής πληροφορικής είναι το πρόβλημα P = NP, που ασχολείται με τη σχέση μεταξύ των κλάσεων πολυπλοκότηταςP και NP. Το Ινστιτούτο Μαθηματικών Clay έχει προσφέρει 1 εκατομμύριο δολάρια στις ΗΠΑ για την πρώτη σωστή απόδειξη, όπως και για άλλα έξι ανοιχτά μαθηματικά προβλήματα.[7]
Η θεωρητική πληροφορική περιλαμβάνει περιοχές των διακριτών μαθηματικών που έχουν σχέση με τους υπολογιστές. Βασίζεται σε σημαντικό βαθμό στη θεωρία γράφων και στη λογική. Περιλαμβάνει τη μελέτη των αλγορίθμων για τον υπολογισμό μαθηματικών αποτελεσμάτων. Η Θεωρία υπολογισμού μελετά τι μπορεί να υπολογιστεί θεωρητικά και είναι στενά συνδεδεμένη με τη λογική, ενώ η πολυπλοκότητα μελετά το χρόνο που χρειάζονται οι υπολογισμοί. Η θεωρία αυτομάτων και η θεωρία τυπικών γλωσσών έχουν στενή σχέση με τη θεωρία υπολογισμού. Τα δίκτυα Πέτρι και οι άλγεβρες διεργασιών χρησιμοποιούνται για τη μοντελοποίηση υπολογιστικών συστημάτων, ενώ μέθοδοι από τα διακριτά μαθηματικά χρησιμοποιούνται για την ανάλυση ηλεκτρονικών κυκλωμάτων VLSI. Η υπολογιστική γεωμετρία εφαρμόζει αλγόριθμους σε γεωμετρικά προβλήματα και η ανάλυση εικόνας μέσω υπολογιστή (computer image analysis) τους εφαρμόζει σε αναπαραστάσεις εικόνων. Η θεωρητική πληροφορική περιλαμβάνει επίσης τη μελέτη διάφορων υπολογιστικών θεμάτων με συνεχή χαρακτήρα.
Η θεωρία πληροφορίας ασχολείται με τη μέτρηση της πληροφορίας. Σχετικό πεδίο είναι η θεωρία κωδικοποίησης, που χρησιμοποιείται για τη σχεδίαση αποδοτικών και αξιόπιστων μεθόδων μετάδοσης και αποθήκευσης δεδομένων. Η θεωρία πληροφορίας περιλαμβάνει επίσης θέματα σχετικά με τα αναλογικά σήματα και την αναλογική κωδικοποίηση.
Η λογική είναι η μελέτη των αρχών της σωστής συλλογιστικής και της συνεπαγωγής, καθώς επίσης της συνέπειας, της ορθότητας και της πληρότητας. Για παράδειγμα, στα περισσότερα συστήματα της λογικής (αλλά όχι στην ιντουσιονιστική λογική) ο νόμος του Πιρς (((P→Q)→P)→P) είναι θεώρημα. Στην κλασική λογική μπορεί εύκολα να επαληθευτεί με έναν πίνακα αλήθειας. Η μελέτη των μαθηματικών αποδείξεων είναι ιδιαίτερα σημαντική στη λογική και έχει εφαρμογές στην αυτοματοποιημένη απόδειξη θεωρημάτων και στην τυπική επαλήθευση λογισμικού.
Οι λογικοί τύποι (logical formulas) είναι διακριτές δομές, όπως και οι αποδείξεις, που σχηματίζουν πεπερασμένα δένδρα[8] ή, γενικότερα, κατευθυνόμενους ακυκλικούς γράφους[9][10] (με κάθε βήμα της συνεπαγωγής να συνδυάζει έναν ή περισσότερους από τους κλάδους των υποθέσεων για να φτάσει σε ένα αποτέλεσμα). Η τιμή αλήθειας των λογικών τύπων συνήθως σχηματίζουν ένα πεπερασμένο σύνολο που περιορίζεται γενικά σε δύο τιμές: αληθές και ψευδές, αλλά η λογική μπορεί να έχει και συνεχείς τιμές, όπως η ασαφής λογική. Έχουν επίσης μελετηθεί έννοιες όπως τα άπειρα δένδρα αποδείξεων ή τα άπειρα δένδρα συνεπαγωγών,[11] για παράδειγμα στην infinitary λογική.
Η θεωρία συνόλων είναι ο κλάδος των μαθηματικών που μελετά τα σύνολα, τα οποία είναι συλλογές από αντικείμενα όπως το {μπλε, άσπρο, κόκκινο} ή το (άπειρο) σύνολο όλων των πρώτων αριθμών. Τα μερικώς διατεταγμένα σύνολα και τα σύνολα με άλλες σχέσεις έχουν εφαρμογές σε πολλά πεδία.
Στα διακριτά μαθηματικά, τα μετρήσιμα σύνολα (συμπεριλαμβανομένων των πεπερασμένων συνόλων) είναι το βασικό αντικείμενο μελέτης. Η αρχή της θεωρίας συνόλων ως κλάδος των μαθηματικών συνήθως ορίζεται από το έργο του Γκέοργκ Καντόρ πάνω στη διάκριση μεταξύ διαφορετικών τύπων άπειρων συνόλων, με αφετηρία τη μελέτη των τριγωνομετρικών σειρών, ενώ η περαιτέρω ανάπτυξη της θεωρίας των άπειρων συνόλων είναι εκτός των σκοπών των διακριτών μαθηματικών. Πράγματι, η σύγχρονη έρευνα πάνω στη περιγραφική θεωρία συνόλων χρησιμοποιεί σε σημαντικό βαθμό τα κλασικά συνεχή μαθηματικά.
Η συνδυαστική μελετά τον τρόπο με τον οποίο μπορούν να συνδυαστούν ή να διαταχτούν οι διακριτές δομές.
Η απαριθμητική συνδυαστική ασχολείται κυρίως με τη μέτρηση του αριθμού συγκεκριμένων συνδυαστικών αντικειμένων όπως οι διατάξεις, οι συνδυασμοί, και η διαμέριση ενός συνόλου.
Η αναλυτική συνδυαστική ασχολείται με την απαρίθμηση (δηλαδή τον προσδιορισμό του αριθμού) των συνδυαστικών δομών χρησιμοποιώντας εργαλεία της μιγαδικής ανάλυσης και της θεωρίας πιθανοτήτων. Σε αντίθεση με την απαριθμητική ανάλυση, η οποία χρησιμοποιεί συνδυαστικούς τύπους και ειδικές συναρτήσεις (generating functions) για να περιγράψει τα αποτελέσματα, η αναλυτική συνδυαστική προσπαθεί να βρει ασυμπτωτικούς τύπους.
Η θεωρία σχεδίασης μελετά τη συνδυαστική σχεδίαση, που ασχολείται με υποσύνολα με ιδιαίτερες ιδιότητες τομής.
Η θεωρία διαμέρισης μελετά διάφορα απαριθμητικά και ασυμπτωτικά προβλήματα που σχετίζονται με τη διαμέριση ακεραίων και έχει στενή σχέση με τις σειρές q (q-series), τις ειδικές συναρτήσεις (special functions) και τις πολυωνυμικές ορθογώνιες ακολουθίες. Αρχικά αποτέλεσε τμήμα της θεωρίας αριθμών και της ανάλυσης αλλά σήμερα η θεωρία διαμέρισης θεωρείται είτε μέρος της συνδυαστικής, είτε ανεξάρτητο πεδίο.
Η θεωρία γράφων, η οποία μελετά τους γράφους και τα δίκτυα, συχνά θεωρείται μέρος της συνδυαστικής, αλλά έχει αναπτυχθεί αρκετά και ξεχωριστά, με δικό της είδος προβλημάτων, ώστε να θεωρείται ξεχωριστό αντικείμενο.[12] Οι γράφοι αποτελούν ένα από τα σημαντικότερα αντικείμενα προς μελέτη στα διακριτά μαθηματικά γιατί είναι από τα πιο κοινά μοντέλα φυσικών και τεχνητών δομών. Μπορούν να μοντελοποιήσουν αρκετούς τύπους σχέσεων και δυναμικών διεργασιών σε φυσικά, βιολογικά και κοινωνικά συστήματα. Στην επιστήμη υπολογιστών, αναπαριστούν τα δίκτυα επικοινωνιών, την οργάνωση των δεδομένων, τις υπολογιστικές συσκευές, τη ροή των υπολογισμών κ.α.Στα μαθηματικά χρησιμοποιούνται στη γεωμετρία και σε συγκεκριμένες περιοχές της τοπολογίας, π.χ. στη θεωρία κόμβων. Η αλγεβρική θεωρία γράφων έχει στενές σχέσεις με τη θεωρία ομάδων. Υπάρχουν επίσης συνεχείς γράφοι, αλλά συνήθως το μεγαλύτερο μέρος της έρευνας στη θεωρία γράφων συμβαίνει στο πεδίο των διακριτών μαθηματικών.
Η θεωρία διακριτών πιθανοτήτων ασχολείται με γεγονότα που συμβαίνουν σε μετρήσιμους δειγματικούς χώρους. Για παράδειγμα, οι μετρήσεις μέσω παρατήρησης όπως ο αριθμός των πτηνών σε ένα σμήνος είναι φυσικοί αριθμοί {0, 1, 2, ...}. Από την άλλη πλευρά, οι συνεχείς παρατηρήσεις, όπως το βάρος των πτηνών, αποτελούν πραγματικούς αριθμούς και συνήθως μοντελοποιούνται από μια συνεχή κατανομή πιθανότητας όπως η κανονική κατανομή. Οι κατανομές διακριτών πιθανοτήτων μπορούν να χρησιμοποιηθούν για να προσεγγίσουν τις συνεχείς και αντίστροφα. Σε πολύ περιορισμένες καταστάσεις, όπως η ρίψη ζαριών ή σε πειράματα με τράπουλες, ο υπολογισμός της πιθανότητας ενός γεγονότος βασίζεται στην απαριθμητική συνδυαστική.
Η θεωρία αριθμών ασχολείται με τις γενικές ιδιότητες των αριθμών, και ιδιαίτερα των ακεραίων. Έχει εφαρμογή στην κρυπτογραφία, την κρυπτανάλυση και την κρυπτολογία, ειδικότερα όσον αφορά την αριθμητική με υπόλοιπο, τις διοφαντικές εξισώσεις, τη γραμμική και τετραγωνική σύγκλιση, τους πρώτους αριθμούς και τη δοκιμή για πρώτους αριθμούς (primality testing). Η γεωμετρία των αριθμών αποτελεί επίσης θέμα της θεωρίας αριθμών. Στην αναλυτική θεωρία αριθμών, χρησιμοποιούνται και τεχνικές από τα συνεχή μαθηματικά. Θέματα που επεκτείνονται πέρα από τα διακριτά αντικείμενα είναι οι υπερβατικοί αριθμοί, η διοφαντική προσέγγιση, η p-αδική ανάλυση και τα πεδία συναρτήσεων (function fields).
Μια συνάρτηση που ορίζεται σε ένα διάστημα των ακεραίων συνήθως ονομάζεται ακολουθία. Μια ακολουθία μπορεί να είναι μια πεπερασμένη ακολουθία από κάποια πηγή δεδομένων ή μια άπειρη ακολουθία από ένα διακριτό δυναμικό σύστημα. Μια τέτοια διακριτή συνάρτηση θα μπορούσε να οριστεί άμεσα από μια λίστα (αν έχει πεπερασμένο πεδίο τιμών) ή από έναν τύπο που ορίζει το γενικό όρο της, ή μέσω μιας σχέσης (recurrence relation) ή μιας εξίσωσης διαφορών. Οι εξισώσεις διαφορών μοιάζουν με τις διαφορικές εξισώσεις αλλά αντικαθιστούν την παράγωγο με τη διαφορά μεταξύ διπλανών όρων και μπορούν να χρησιμοποιηθούν για να προσεγγίσουν τις τιμές διαφορικών εξισώσεων ή (συχνότερα) ως ξεχωριστά αντικείμενα μελέτης. Πολλά ερωτήματα και μέθοδοι που σχετίζονται με τις διαφορικές εξισώσεις έχουν αντίστοιχα στις εξισώσεις διαφορών. Για παράδειγμα, όπου υπάρχουν ολοκληρωτικοί μετασχηματισμοί στην αρμονική ανάλυση, στη μελέτη συνεχών συναρτήσεων ή αναλογικών σημάτων, υπάρχουν διακριτοί μετασχηματισμοί για διακριτές συναρτήσεις ή ψηφιακά σήματα. Σε αναλογία με το διακριτό χώρο υπάρχουν γενικότεροι διακριτοί ή πεπερασμένοι μετρικοί χώροι και πεπερασμένοι τοπολογικοί χώροι.
Η διακριτή γεωμετρία και η συνδυαστική γεωμετρία ασχολούνται με τις συνδυαστικές ιδιότητες των διακριτών συλλογών από γεωμετρικά αντικείμενα. Ένα κλασικό θέμα της διακριτής γεωμετρίας είναι η πλακόστρωση του επιπέδου. Η υπολογιστική γεωμετρία εφαρμόζει αλγορίθμους σε γεωμετρικά προβλήματα.
Η επιχειρησιακή έρευνα παρέχει τεχνικές επίλυσης πρακτικών προβλημάτων στο χώρο των επιχειρήσεων και σε άλλα πεδία εφαρμογών. Τέτοια προβλήματα είναι η κατανομή πόρων για μεγιστοποίηση κέρδους ή ο χρονοπρογραμματισμός των δραστηριοτήτων ενός εγχειρήματος με σκοπό την ελαχιστοποίηση του ρίσκου. Οι τεχνικές επιχειρησιακής έρευνας περιλαμβάνουν τον γραμμικό προγραμματισμό και άλλες περιοχές της βελτιστοποίησης, της θεωρίας ουρών αναμονής (queuing theory), της θεωρίας χρονοπρογραμματισμού και της θεωρίας δικτύων. Η επιχειρησιακή έρευνα συμπεριλαμβάνει επίσης συνεχείς περιοχές, όπως οι διεργασίες Μαρκόφ συνεχούς χρόνου, τα martingales συνεχούς χρόνου, η βελτιστοποίηση διεργασιών (process optimization), και η συνεχής και η υβριδική θεωρία ελέγχου.
Θεωρία παιγνίων, θεωρία αποφάσεων, θεωρία ωφελιμότητας, θεωρία κοινωνικής επιλογής
Συνεργασία
Λιποταξία
Συνεργασία
-1, -1
-10, 0
Λιποταξία
0, -10
-5, -5
Πίνακας οφέλους για το δίλημμα του φυλακισμένου, ένα συνηθισμένο παράδειγμα της θεωρίας παιγνίων. Ο ένας παίχτης επιλέγει μια σειρά, ο άλλος μια στήλη, και το ζεύγος που προκύπτει δίνει το όφελός τους.
Η θεωρία αποφάσεων ασχολείται με τις τιμές, τις αβεβαιότητες και άλλα προβλήματα που αφορούν μια απόφαση, το πόσο ορθολογική είναι αυτή, και τη βέλτιστη απόφαση που προκύπτει.
Η θεωρία ωφελιμότητας εξετάζει το μέτρο της σχετικής οικονομικής ικανοποίησης που προκύπτει από την κατανάλωση αγαθών και υπηρεσιών, καθώς και το πόσο επιθυμητή είναι αυτή.
Η θεωρία κοινωνικής επιλογής (social choice theory) εξετάζει τις ψηφοφορίες. Μια άλλη προσέγγιση στο ίδιο θέμα είναι η θεωρία κάλπης (ballot theory).
Η θεωρία παιγνίων ασχολείται με τις περιπτώσεις που η επιτυχία εξαρτάται από τις επιλογές των άλλων, με αποτέλεσμα η επιλογή της βέλτιστης πράξης να είναι πολύπλοκη. Υπάρχουν και συνεχή παιχνίδια, βλ. διαφορικό παίγνιο. Σχετικά θέματα της θεωρίας παιγνίων: θεωρία δημοπρασιών (auction theory), δίκαιο μοίρασμα (fair division).
Διακριτοποίηση
Η διακριτοποίηση ασχολείται με τη διαδικασία της μεταφοράς συνεχών μοντέλων και εξισώσεων στα διακριτά αντίστοιχά τους, συχνά για τη διευκόλυνση των υπολογισμών μέσω προσεγγιστικών μεθόδων. Σημαντικό παράδειγμα είναι η αριθμητική ανάλυση.
Ο λογισμός κλίμακας χρόνου ενοποιεί τη θεωρία των εξισώσεων διαφορών με αυτήν των διαφορικών εξισώσεων και έχει εφαρμογές σε πεδία που χρειάζονται ταυτόχρονη μοντελοποίηση διακριτών και συνεχών δεδομένων.