Ο Ακίρα Γιοσίνο (ιαπωνικά: 吉野 彰, Yoshino Akira, γεννήθηκε στις 30 Ιανουαρίου 1948) είναι Ιάπωνας χημικός. Είναι συνεργάτης της Εταιρείας Ασάχι Κασέι και καθηγητής στο Πανεπιστήμιο Μέιτζο στη Ναγκόγια. Δημιούργησε την πρώτη ασφαλή, βιώσιμη για την παραγωγή Μπαταρία ιόντων λιθίου,[6] η οποία χρησιμοποιήθηκε ευρέως σε κινητά τηλέφωνα και φορητούς υπολογιστές. Το 2019 ο Γιοσίνο τιμήθηκε με το βραβείο Νόμπελ Χημείας μαζί με τους Μ. Στάνλεϊ Γουίτινγκχαμ και Τζον Μπ. Γκούντεναου[6].
Νεαρή ηλικία και εκπαίδευση
Ο Γιοσίνο γεννήθηκε στη Σουίτα της Ιαπωνίας στις 30 Ιανουαρίου 1948.[7] Αποφοίτησε από το Λύκειο Κιτάνο στην πόλη Οσάκα (1966)[8] Πήρε πτυχίο το 1970 και μεταπτυχιακό το 1972, και τα δύο στη μηχανική από το Πανεπιστήμιο του Κιότο, και διδακτορικό δίπλωμα από το Πανεπιστήμιο της Οσάκα το 2005[9][10].
Κατά τη διάρκεια της μαθητείας του στο δημοτικό σχολείο, ένας από τους δασκάλους του, του πρότεινε να διαβάσει το βιβλίο "Η χημική ιστορία ενός κεριού" του Μάικλ Φαραντέι και αυτό προκάλεσε στον Γιοσίνο πλήθος ερωτήσεων σχετικά με τη χημεία, ένα θέμα που δεν τον ενδιέφερε πριν από την ανάγνωση του βιβλίου[11]
.
Κατά τη διάρκεια των φοιτητικών του χρόνων, ο Γιοσίνο είχε παρακολουθήσει ένα μάθημα που δίδασκε ο Ιάπωνας χημικός Κενίτσι Φουκούι, ο πρώτος κάτοχος βραβείου Νόμπελ Χημείας με καταγωγή από την Ανατολική Ασία[12].
Σταδιοδρομία
Ο Γιοσίνο πέρασε όλη τη μη ακαδημαϊκή του καριέρα στην Εταιρεία Ασάχι Κασέι[13]. Αμέσως μετά την απόκτηση του μεταπτυχιακού του το 1972, ο Γιοσίνο άρχισε να εργάζεται στην Ασάχι Κασέι. [14] Έγινε μέλος της ομάδας διερευνητικής έρευνας στην Εταιρεία Ασάχι Κασέι στις αρχές της δεκαετίας του 1970 για την εξερεύνηση νέων υλικών γενικής χρήσεως, αρχικά εξερευνώντας πρακτικές εφαρμογές για το πολυακετυλένιο, αλλά στράφηκε στον πειραματισμό της χρήσης του πολυακετυλενίου ως υλικό ανόδου μόλις η ιαπωνική βιομηχανία ηλεκτρονικών ειδών προσπάθησε να δημιουργήσει νέες ελαφριές και συμπαγείς επαναφορτιζόμενες μπαταρίες για την τροφοδοσία των κινητών συσκευών τους[11].
Ξεκίνησε να εργάζεται στο εργαστήριο του Καβασάκι το 1982 και προήχθη σε διευθυντή ανάπτυξης προϊόντων για μπαταρίες ιόντων το 1992[14]. Το 1994 έγινε διευθυντής τεχνικής ανάπτυξης για τον κατασκευαστή LIB A&T Battery Corp.,[14] μια κοινοπραξία της Ασάχι Κασέι και της Toshiba. Η Ασάχι Κασέι τον έκανε υπότροφο το 2003 και, το 2005, γενικό διευθυντή του δικού του εργαστηρίου.[14] Από το 2017, διετέλεσε καθηγητής στο πανεπιστήμιο Μέιτζο και η ιδιότητά του στην Ασάχι Κασέι μετεξελίχθηκε σε επίτιμο υπότροφο[14].
Επιστημονικά επιτεύγματα
Το 1981 ο Γιοσίνο ασχολήθηκε με την έρευνα επαναφορτιζόμενων μπαταριών με τη χρήση πολυακετυλενίου[15]. Το πολυακετυλένιο είναι το ηλεκτρικά αγώγιμο πολυμερές που ανακάλυψε ο Χιντέκι Σιρακάβα, ο οποίος αργότερα (το 2000) τιμήθηκε με το βραβείο Νόμπελ Χημείας για την ανακάλυψή του.[14].
Το 1983 ο Γιοσίνο κατασκεύασε μια πρωτότυπη επαναφορτιζόμενη μπαταρία χρησιμοποιώντας οξείδιο του λιθίου κοβαλτίου (LiCoO2) (που ανακαλύφθηκε το 1979 από τους Γκόντσαλ κ.ά. στο Πανεπιστήμιο του Στάνφορντ,[16][17][18] και τους Τζον Γκούντεναου και Κόιτσι Μιζουσίμα στο Πανεπιστήμιο της Οξφόρδης) ως κάθοδο και πολυακετυλένιο ως άνοδο.[14] Αυτό το πρωτότυπο, στο οποίο το ίδιο το υλικό της ανόδου δεν περιέχει λίθιο και τα ιόντα λιθίου μεταναστεύουν από την κάθοδο LiCoO2 στην άνοδο κατά τη διάρκεια της φόρτισης, ήταν ο άμεσος πρόδρομος της σύγχρονης μπαταρίας ιόντων λιθίου (LIB)[14].
Το πολυακετυλένιο είχε χαμηλή πραγματική πυκνότητα, πράγμα που σήμαινε ότι μια υψηλή χωρητικότητα απαιτούσε μεγάλο όγκο μπαταρίας, και παρουσίαζε επίσης προβλήματα αστάθειας. Εποµένως, ο Γιοσίνο επέλεξε ένα υλικό άνθρακα ως άνοδο και, το 1985, δηµιούργησε το πρώτο πρωτότυπο της µπαταρίας LIB και έλαβε το βασικό δίπλωµα ευρεσιτεχνίας[14][19][20].
Το γεγονός αυτό αποτέλεσε τη γέννηση της σημερινής μπαταρίας ιόντων λιθίου[14].
Η LIB σε αυτή τη διαμόρφωση τέθηκε στην αγορά από τη Sony το 1991 και από την A&T Battery το 1992[21]. Ο Γιοσίνο περιέγραψε τις προκλήσεις και την ιστορία της διαδικασίας εφεύρεσης σε ένα κεφάλαιο βιβλίου το 2014 [22].
Ο Γιοσίνο ανακάλυψε ότι το ανθρακούχο υλικό με συγκεκριμένη κρυσταλλική δομή ήταν κατάλληλο ως υλικό ανόδου[19][20] και αυτό ήταν το υλικό ανόδου που χρησιμοποιήθηκε στην πρώτη γενιά εμπορικών LIB. Ο Γιοσίνο ανέπτυξε τον συλλέκτη ρεύματος από φύλλο αλουμινίου[23], ο οποίος σχημάτιζε ένα στρώμα παθητικοποίησης για να επιτρέπει την υψηλή τάση του στοιχείου με χαμηλό κόστος, και ανέπτυξε τη λειτουργική μεμβράνη διαχωρισμού[24] και τη χρήση μιας διάταξης με θετικό συντελεστή θερμοκρασίας (PTC)[25] για πρόσθετη ασφάλεια[14].
Η δομή του πηνίου της LIB επινοήθηκε από τον Γιοσίνο για να παρέχει μεγάλη επιφάνεια ηλεκτροδίων και να επιτρέπει την εκφόρτιση υψηλού ρεύματος παρά τη χαμηλή αγωγιμότητα του οργανικού ηλεκτρολύτη[14].
Το 1986 ο Γιοσίνο ανέθεσε την κατασκευή μιας παρτίδας πρωτοτύπων LIB[14]
Με βάση τα δεδομένα των δοκιμών ασφαλείας από αυτά τα πρωτότυπα, το Υπουργείο Μεταφορών των Ηνωμένων Πολιτειών (DOT) εξέδωσε μια επιστολή στην οποία ανέφερε ότι οι μπαταρίες ήταν διαφορετικές από τη μεταλλική μπαταρία λιθίου[26].
Βραβεία και τιμές
1998 Βραβείο Χημικής Τεχνολογίας από τη Χημική Εταιρεία της Ιαπωνίας[13]
1999: Βραβείο Τεχνολογίας Τμήματος Μπαταριών από την Ηλεκτροχημική Εταιρεία[13].
2001: Βραβεία Ιτσιμούρα στη Βιομηχανία - Βραβείο Ευγενούς Επίτευξης[13].
2003: Έπαινος για την Επιστήμη και την Τεχνολογία από τον Υπουργό Παιδείας, Πολιτισμού, Αθλητισμού, Επιστήμης και Τεχνολογίας - Βραβείο για την Επιστήμη και την Τεχνολογία, κατηγορία ανάπτυξης[13]].
2004: Μετάλλιο με μωβ κορδέλα, από την κυβέρνηση της Ιαπωνίας[13].
2011: Βραβείο Yamazaki-Teiichi, από το Ίδρυμα για την Προώθηση της Επιστήμης και Τεχνολογίας Υλικών της Ιαπωνίας[27].
↑N. A. Godshall, I. D. Raistrick, and R. A. Huggins, Journal of the Electrochemical Society, Abstract 162, Vol. 126, p. 322C; "Thermodynamic Investigations of Ternary Lithium-Transition Metal-Oxide Systems for Lithium Batteries" (August 1979).
↑N. A. Godshall, I. D. Raistrick, and R. A. Huggins, Journal of the Electrochemical Society, Extended Abstract 162, Vol. 79-2, pp. 420–422; "Thermodynamic Investigations of Ternary Lithium-Transition Metal-Oxide Systems for Lithium Batteries" (October 1979).
↑Ned A. Godshall, "Electrochemical and Thermodynamic Investigation of Ternary Lithium -Transition Metal-Oxide Cathode Materials for Lithium Batteries: Li2MnO4 spinel, LiCoO2, and LiFeO2", Presentation at 156th Meeting of the Electrochemical Society, Los Angeles, CA, (17 October 1979).
↑ 20,020,1«JP 2642206». Αρχειοθετήθηκε από το πρωτότυπο στις 22 Μαρτίου 2020. Ανακτήθηκε στις 7 Ιουλίου 2011., by USPTO PATENT FULL-TEXT AND IMAGE DATABASE
↑«Article of Tech-On». Αρχειοθετήθηκε από το πρωτότυπο στις 22 Μαρτίου 2012., JP 2128922, Yoshino; Akira, "Nonaqueous secondary Battery", Application date 28 May 1984, issued 2 May 1997, assigned to Asahi Kasei
↑«JP 2642206»., Yoshino; Akira, "Battery", Application date 28 May 1989, issued 2 May 1997, assigned to Asahi Kasei
↑«JP 3035677»., Yoshino; Akira, "
Secondary battery equipped with safety element", Application date 13 September 1991, issued 25 February 2000, assigned to Asahi Kasei
↑Lithium-ion secondary battery (Japanese) 2nd edition, chapter 2 "History of development of lithium-ion secondary battery", P27-33, Nikkan Kogyo Shimbun (1996)