Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen (0 °C, 1000 hPa).
Thioharnstoff bildet farblose und geruchlose Kristalle. Die Verbindung zeigt keinen scharfen Schmelzpunkt, da ab 153 °C eine Umlagerung zum Ammoniumthiocyanat erfolgt.[4] Die Literatur gibt Schmelzpunkte zwischen 167 °C und 182 °C an.[4] Thioharnstoff hat bei Raumtemperatur eine orthorhombischeKristallstruktur mit RaumgruppePnma (Raumgruppen-Nr. 62)Vorlage:Raumgruppe/62.[5] Das Kohlenstoff- und das Schwefelatom liegen auf einer Spiegelebene, sodass das Molekül die Punktgruppensymmetrie CS besitzt. Es ist beinahe planar und die Symmetrie somit näherungsweise C2v. Beim Abkühlen des Kristalls[6] oder bei hohem Druck[7] entstehen durch Fest-fest-Phasenübergänge Kristallstrukturen mit anderer Symmetrie.
Im Jahr 1993 betrug die weltweite jährliche Produktion 10.000 Tonnen.[8] Als reine Verbindung wird Thioharnstoff hauptsächlich (25 % der Produktion) zur Extraktion von Metallen wie Gold und Silber aus Erzen eingesetzt. Außerdem wird er als Hilfsstoff in Diazo-Papier (16 % der Produktion) und als Katalysator zur Isomerisierung von Maleinsäure in Fumarsäure verwendet (12 % der Produktion). Als Reaktant dient Thioharnstoff vor allem zur Herstellung von Thioharnstoffdioxid (27,5 % der Produktion.[9]). Weitere wichtige Anwendungen sind:
Thioharnstoff ist als krebserregend, Kategorie 2 (Verdacht auf karzinogene Wirkung beim Menschen) und reproduktionstoxisch, Kategorie 2 (Kann vermutlich das Kind im Mutterleib schädigen) eingestuft.[1] Er kann nur sehr schwer mit normalen Abwasserreinigungsmethoden aus Abwässern entfernt werden.
↑David R. Lide (Hrsg.): CRC Handbook of Chemistry and Physics. 90. Auflage. (Internet-Version: 2010), CRC Press / Taylor and Francis, Boca Raton FL, Standard Thermodynamic Properties of Chemical Substances, S. 5-20.
↑M. R. Truter: Comparison of photographic and counter observations for the X-ray crystal structure analysis of thiourea. In: Acta Crystallographica. Band22, Nr.4, 1967, S.556–559, doi:10.1107/S0365110X67001124.
↑I. Takahashi, A. Onodera, Y. Shiozaki: Structural changes of thiourea in connection with its phase transitions: reappraisal of rigidity and libration of the molecule. In: Acta Crystallographica Section B. Band46, Nr.5, 1990, S.661–664, doi:10.1107/S0108768190006012.
↑T. Asahi, K. Hasebe, A. Onodera: Crystal Structure of the High Pressure Phase VI of Thiourea. In: Journal of the Physical Society of Japan. Band69, 2000, S.2895–2899, doi:10.1143/JPSJ.69.2895.
↑ abcdefgConcise International Chemical Assessment Document (CICAD) für Thiourea, abgerufen am 9. Dezember 2014.
↑Herwig Hulpke, Herbert A. Koch, Reinhard Nießner: RÖMPP Lexikon Umwelt, 2. Auflage, 2000. Georg Thieme Verlag, 2014, ISBN 3-13-179342-2, S.795 (eingeschränkte Vorschau in der Google-Buchsuche).