Read other articles:
Adams menghadiri San Diego Comic-Con International pada 2015 Amy Adams adalah seorang pemeran Amerika yang membuat debutnya dalam film komedi gelap tahun 1999 Drop Dead Gorgeous.[1] Ia menjadi bintang tamu dalam berbagai acara televisi, yang meliputi That '70s Show, Charmed, Buffy the Vampire Slayer, dan The Office, dan juga tampul dalam peran-peran film kecil. Pada 2002, ia meraih peran besar pertamanya dalam film drama kejahatan biografi garapan Steven Spielberg Catch Me If You Can....
Halaman ini berisi artikel tentang konsep jual beli dalam ilmu ekonomi. Untuk tempat jual beli umum, lihat Pasar tradisional. Litografi oleh Club Wilson yang menggambarkan sebuah pasar di Jawa (tahun 1700-1800).1865-1876) Pasar atau pekan adalah institusi, prosedur, hubungan sosial dan infrastruktur tempat usaha menjual barang, jasa, dan tenaga kerja untuk orang-orang dengan imbalan uang.[1] Barang dan jasa yang dijual menggunakan alat pembayaran yang sah seperti uang fiat. Kegiatan i...
رينيه جينون وأناندا كوماراسوامي وفريجوف شوان . المدرسة التقليدية أو الخالدة مجموعة من مفكري القرنين العشرين والحادي والعشرين المؤمنون بوجود حكمة خالدة أو فلسفة خالدة ، وحقائق جوهرية وكلية تشكل مصدرًا لجميع ديانات العالم الرئيسية وتتقاسمها. المؤيدون الأوائل لهذه الم�...
Vice president of the United States from 1877 to 1881 For other people named William Wheeler, see William Wheeler (disambiguation). William A. WheelerWheeler in 187719th Vice President of the United StatesIn officeMarch 4, 1877 – March 4, 1881PresidentRutherford B. HayesPreceded byHenry WilsonSucceeded byChester A. ArthurMember of theU.S. House of Representativesfrom New YorkIn officeMarch 4, 1869 – March 3, 1877Preceded byCalvin T. HulburdSucceeded byAmaziah B. JamesCon...
Extinct genus of mammals AmebelodonTemporal range: Middle Miocene–Late Miocene PreꞒ Ꞓ O S D C P T J K Pg N Mandible assigned to A. fricki Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Mammalia Order: Proboscidea Family: †Amebelodontidae Genus: †AmebelodonBarbour, 1927 Species A. fricki Barbour, 1927 (type) Amebelodon is a genus of extinct proboscidean belonging to Amebelodontidae (the so-called shovel-tuskers). The most striking attribute of t...
Japanese actor Tasuku Emoto柄本 佑Emoto at the 36th Tokyo International Film Festival in October 2023Born (1986-12-16) December 16, 1986 (age 37)Tokyo, JapanEducationWako High SchoolWaseda University Art SchoolOccupationActorYears active2003–presentAgentAlpha AgencyKnown forAsa ga KitaUtsukushī Natsu KirishimaSpouse Sakura Ando (m. 2012)Children1ParentsAkira Emoto (father)Kazue Tsunogae (mother)RelativesTokio Emoto (brother)Eiji Okuda (fath...
Egyptian ruler For the use in Islamic architecture, see Qa'a (room). For other uses, see Qaa (disambiguation). Qa'aBiénechês, Óubiênthis, VíbenthisRestored tomb stele of Qa'aPharaohReign33 years, ca. 2910 BCPredecessorSemerkhetSuccessorHotepsekhemwy (most likely) or Sneferka, Horus BirdRoyal titulary Horus name Hor-Qa'aḤr-qˁ3Raised arm of Horus Abydos King List QebehqbḥHe from the north Saqqara Tablet Qebehu-khentiqbḥ.w-ḫntjHe from the cool north Turin King List...beh...bḥ Pre...
Chemical compound EtoxadrolClinical dataATC codenoneLegal statusLegal status In general: legal Identifiers IUPAC name (2S)-2-[(2S,4S)-2-ethyl-2-phenyl-1,3-dioxolan-4-yl]piperidine CAS Number28189-85-7 NPubChem CID19324ChemSpider16735807 YUNIISIQ2UWR01KChEMBLChEMBL305904 YCompTox Dashboard (EPA)DTXSID10912322 Chemical and physical dataFormulaC16H23NO2Molar mass261.365 g·mol−13D model (JSmol)Interactive image SMILES CC[C@]1(C2=CC=CC=C2)OC[C@H]([C@H]3NCCCC3)O1 InChI I...
Shepherd Neame LtdIndustriMinuman beralkoholDidirikan1698KantorpusatFaversham, Kent, InggrisProdukBirProduksi180,000 imperial barel (294,587 hl) (2020)[1]Pendapatan£145,8 juta (2019)[2]PemilikJonathan NeameCEOKaryawan1.865[2]Situs webshepherdneame.co.uk Shepherd Neame adalah sebuah pabrik bir independen asal Inggris yang telah berkantor pusat di Faversham, Kent, selama lebih dari 300 tahun.[3] Perusahaan ini resmi didirikan pada tahun 1698, namun catatan ...
Singularity ProjectSingularity after boot-up.Perusahaan / pengembangMicrosoft CorporationDiprogram dalamAssembly language, C, C++, C#, Sing#KeluargaLanguage-based operating systemsModel sumberShared sourceRilis final2.0 / 14 November 2008; 15 tahun lalu (2008-11-14)Dukungan platformx86Kernel typeMicrokernel Language basedAntarmuka bawaanCommand line interfaceLisensiMicrosoft Research LicenseSitus web resmihttp://research.microsoft.com/en-us/projects/singularity/ Singularity adalah s...
National Historic Site of the United States United States historic placeGloria Dei (Old Swedes') ChurchNational Historic SiteU.S. National Register of Historic PlacesPennsylvania state historical marker The church in March 2014Location in metropolitan PhiladelphiaShow map of PhiladelphiaGloria Dei (Old Swedes') Church (Pennsylvania)Show map of PennsylvaniaGloria Dei (Old Swedes') Church (the United States)Show map of the United StatesLocation929 South Water StreetPhiladelphia, PennsylvaniaCoo...
Malaysian badminton player Badminton playerYew Cheng Hoe尤清和Personal informationBorn1943 (age 80–81)Penang, British Malaya[1] Medal record Men's badminton Representing Malaysia Thomas Cup 1967 Jakarta Men's team Commonwealth Games 1966 Kingston Men's doubles 1966 Kingston Men's singles Asian Games 1966 Bangkok Men's team 1962 Jakarta Men's team Asian Championships 1962 Kuala Lumpur Men's team 1965 Lucknow Men's team 1962 Kuala Lumpur Men's singles Southeast Asian...
此条目序言章节没有充分总结全文内容要点。 (2019年3月21日)请考虑扩充序言,清晰概述条目所有重點。请在条目的讨论页讨论此问题。 哈萨克斯坦總統哈薩克總統旗現任Қасым-Жомарт Кемелұлы Тоқаев卡瑟姆若马尔特·托卡耶夫自2019年3月20日在任任期7年首任努尔苏丹·纳扎尔巴耶夫设立1990年4月24日(哈薩克蘇維埃社會主義共和國總統) 哈萨克斯坦 哈萨克斯坦政府...
جزء من سلسلة مقالات سياسة جنوب السودانجنوب السودان الدستور الدستور حقوق الإنسان السلطة التنفيذية الرئيس مجلس الوزراء السلطة التشريعية البرلمان السلطة القضائية القضاء الانتخابات الانتخابات الأحزاب السياسية السياسة الخارجية العلاقات الخارجية جنوب السودان السياسةعنت ا�...
تشير فرضية الاضطراب المتوسط (آي دي إتش) إلى أن تنوع الأنواع المحلية يجري تعظيمه عندما لا يكون الاضطراب البيئي نادرًا جدًا أو متكررًا جدًا. تُصبح جميع الأنواع معرضة لخطر الانقراض عند حدوث مستويات عالية من الاضطراب، ناتجة عن حرائق الغابات المتكررة أو الآثار البشرية مثل إزال�...
Public artwork by James Earle Fraser in Washington, DC Second Division MemorialSecond Division MemorialLocationPresident's ParkWashington, D.C.United StatesCoordinates38°53′33″N 77°02′17″W / 38.8925798°N 77.0379715°W / 38.8925798; -77.0379715Established1936Governing bodyNational Park Service The Second Division Memorial is located in President's Park, between 17th Street Northwest and Constitution Avenue in Washington, DC, United States. Detail The Mem...
Adolfo Federico II de Mecklemburgo-Strelitz Información personalNombre en alemán Adolf Friedrich II zu Mecklenburg Nacimiento 19 de octubre de 1658 Grabow (Alemania) Fallecimiento 12 de mayo de 1708 (49 años)Neustrelitz (Alemania) Sepultura Mirow Nacionalidad AlemanaReligión Luteranismo FamiliaFamilia Casa de Mecklemburgo Padres Adolfo Federico I de Mecklemburgo Marie Katharina of Brunswick-Dannenberg Cónyuge María de Mecklemburgo-Güstrow (1684-1701)Johanna of Saxe-Gotha-Altenburg...
Flagge der Balearischen Inseln Vexillologisches Symbol: Seitenverhältnis: 2:3 Offiziell angenommen: 1. März 1983 Die Flagge der Balearischen Inseln wurde am 1. März 1983 eingeführt. Inhaltsverzeichnis 1 Beschreibung und Bedeutung 2 Geschichte 3 Flaggen der Inselräte 4 Flaggen der untergeordneten Verwaltungseinheiten 5 Weblinks 6 Einzelnachweise Beschreibung und Bedeutung Als ehemaliger Teil der Krone von Aragonien dient die Senyera als Grundlage der Flagge. Die Flagge der Balearischen I...
DFB Pokal 1995-1996 Competizione Coppa di Germania Sport Calcio Edizione 53ª Luogo Germania Risultati Vincitore Kaiserslautern(2º titolo) Secondo Karlsruher SC Cronologia della competizione 1994-1995 1996-1997 Manuale La DFB-Pokal 1995–96 è stata la 53ª edizione della competizione. 64 squadre si son sfidate nella competizione tra il 15 agosto 1995 e il 24 maggio 1996. In finale il Kaiserslautern ha sconfitto il Karlsruher SC 1-0 conquistando il suo secondo titolo. Nel primo turno...
Product of an integer with itself This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (February 2012) (Learn how and when to remove this message) Square number 16 as sum of gnomons. In mathematics, a square number or perfect square is an integer that is the square of an integer;[1] in other words, it is the product of some integer with itself. For example,...