Streckenzug oder Polygonzug von nach . Fallen und zusammen, spricht man von einem geschlossenen Polygonzug, ansonsten von einem offenen Polygonzug.[7]
Bezug zu Polygonen
Die geometrische Figur, deren Rand von einem geschlossenen Polygonzug gebildet wird, heißt Polygon, die Punkte heißen Eckpunkte des Polygons und die Strecken heißen Seiten des Polygons. Liegen die Punkte in einer Ebene, so nennt man diese Figur ein ebenes Polygon, andernfalls ein windschiefes Polygon.
Eine Länge ist allein erklärt für rektifizierbare Kurven. Zum Nachweis der Rektifizierbarkeit betrachtet man für eine gegebene Kurve alle Polygonzüge von nach , durch deren Ecken die Kurve in dieser Reihenfolge verläuft, welche also so beschaffen sind, dass die Seiten des von den Ecken gebildeten Polygons zugleich Sehnen von darstellen. Ein derartiger Polygonzug wird auch als Sehnenzug oder als Sehnenpolygon bezeichnet und man sagt, ist einbeschrieben. Zur Feststellung der Rektifizierbarkeit von zwischen und werden die Längen aller einbeschriebenen Sehnenpolygone untersucht. Dabei versteht man unter der Länge eines Polygonzugs die Summe der Längen seiner Strecken.
Wenn für all diese Längen innerhalb eine obere Schranke existiert, dann ist eine rektifizierbare Kurve, und zwar nur dann. In diesem Falle wird die Länge als das Supremum aller Längen einbeschriebener Sehnenpolygone definiert (alles für den Kurvenabschnitt bis ).
Für die Feststellung der Rektifizierbarkeit von Kurven gilt folgendes Kriterium:
Die Polygonzüge spielen ebenfalls eine Rolle für die Feststellung, wann im Raum ein Gebiet vorliegt und wann nicht. Hier gilt der folgende Satz:
Eine offene Teilmenge eines topologischen Vektorraums (und insbesondere des -dimensionalen Raums) ist genau dann zusammenhängend, wenn sich je zwei Punkte von durch einen ganz in liegenden Polygonzug verbinden lassen.[13]
Rudolf Bereis: Darstellende Geometrie I (= Mathematische Lehrbücher und Monographien. Band11). Akademie-Verlag, Berlin 1964.
Charles O. Christenson, William L. Voxman: Aspects of Topology (= Monographs and Textbooks in Pure and Applied Mathematics. Band39). Marcel Dekker, New York / Basel 1977, ISBN 0-8247-6331-9.
Jürgen Elstrodt: Maß- und Integrationstheorie (= Grundwissen Mathematik (Springer-Lehrbuch)). 6., korrigierte Auflage. Berlin / Heidelberg 2009, ISBN 978-3-540-89727-9.
Michael Henle: A Combinatorial Introduction to Topology (= A Series of Books in Mathematical Sciences). W. H. Freeman and Company, San Francisco 1979, ISBN 0-7167-0083-2.
Harro Heuser: Lehrbuch der Analysis. Teil 2 (= Mathematische Leitfäden). 5., durchgesehene Auflage. Teubner Verlag, Wiesbaden 1990, ISBN 3-519-42222-0.
Konrad Knopp: Funktionentheorie I. Grundlagen der allgemeinen Theorie der analytischen Funktionen (= Sammlung Göschen. Band668). Walter de Gruyter Verlag, Berlin 1965.
Willi Rinow: Lehrbuch der Topologie. Deutscher Verlag der Wissenschaften, Berlin 1975.
Hans von Mangoldt, Konrad Knopp: Einführung in die höhere Mathematik. 13. Auflage. 2. Band: Differentialrechnung, unendliche Reihen, Elemente der Differentialgeometrie und der Funktionentheorie. S. Hirzel Verlag, Stuttgart 1968.
Hans von Mangoldt, Konrad Knopp: Einführung in die höhere Mathematik. 13. Auflage. 3. Band: Integralrechnung und ihre Anwendungen, Funktionentheorie, Differentialgleichungen. S. Hirzel Verlag, Stuttgart 1967.
Einzelnachweise und Anmerkungen
↑Willi Rinow: Lehrbuch der Topologie. Deutscher Verlag der Wissenschaften, Berlin 1975, S.22–23.
↑Harro Heuser: Lehrbuch der Analysis. Teil 2 (= Mathematische Leitfäden). 5., durchgesehene Auflage. Teubner Verlag, Wiesbaden 1990, ISBN 3-519-42222-0, S.349ff.
↑Hans von Mangoldt, Konrad Knopp: Einführung in die höhere Mathematik. 13. Auflage. 2. Band: Differentialrechnung, unendliche Reihen, Elemente der Differentialgeometrie und der Funktionentheorie. S. Hirzel Verlag, Stuttgart 1968, S.296ff.
↑Charles O. Christenson, William L. Voxman: Aspects of Topology (= Monographs and Textbooks in Pure and Applied Mathematics. Band39). Marcel Dekker, New York / Basel 1977, ISBN 0-8247-6331-9, S.63–64.
↑Rudolf Bereis: Darstellende Geometrie I (= Mathematische Lehrbücher und Monographien. Band11). Akademie-Verlag, Berlin 1964, S.117ff.
↑In der Regel wird der Grenzfall, dass nur aus einer einzigen Strecke oder gar nur aus einem einzigen Punkt besteht, ausgeschlossen. Polygonzüge bestehen also in der Regel aus mindestens zwei Strecken.
↑Hans von Mangoldt, Konrad Knopp: Einführung in die höhere Mathematik. 13. Auflage. 3. Band: Integralrechnung und ihre Anwendungen, Funktionentheorie, Differentialgleichungen. S. Hirzel Verlag, Stuttgart 1967, S.306–307.
↑Hans von Mangoldt, Konrad Knopp: Einführung in die höhere Mathematik. 13. Auflage. 2. Band: Differentialrechnung, unendliche Reihen, Elemente der Differentialgeometrie und der Funktionentheorie. S. Hirzel Verlag, Stuttgart 1968, S.415ff.
↑Hans von Mangoldt, Konrad Knopp: Einführung in die höhere Mathematik. 13. Auflage. 3. Band: Integralrechnung und ihre Anwendungen, Funktionentheorie, Differentialgleichungen. S. Hirzel Verlag, Stuttgart 1967, S.224ff.
↑Jürgen Elstrodt: Maß- und Integrationstheorie (= Grundwissen Mathematik (Springer-Lehrbuch)). 6., korrigierte Auflage. Berlin / Heidelberg 2009, ISBN 978-3-540-89727-9, S.78, 308ff.
↑Konrad Knopp: Funktionentheorie I. Grundlagen der allgemeinen Theorie der analytischen Funktionen (= Sammlung Göschen. Band668). Walter de Gruyter Verlag, Berlin 1965, S.22–23.
↑Willi Rinow: Lehrbuch der Topologie. Deutscher Verlag der Wissenschaften, Berlin 1975, S.150.