Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.
Oganesson ist ein chemisches Element und weist Stand 2024 die höchste nachgewiesene Ordnungszahl 118 auf. Sein Elementsymbol ist Og. Es steht im Periodensystem der Elemente in der 18. IUPAC-Gruppe bzw. in der 8. Hauptgruppe und gehört damit formal zu den Edelgasen. Ob es sich auch wie ein Edelgas verhält, kann Stand 2024 nicht sicher geklärt werden, da die chemischen Eigenschaften des Oganessons noch unbekannt sind. Sein Name leitet sich von seinem Mitentdecker Juri Oganesjan ab.[2]
Im Periodensystem steht es zwischen dem 117Tenness (2010 erstmals synthetisiert) und dem hypothetischen 119Ununennium.
Ein Bericht über die Erzeugung der Elemente 116 und 118 im Lawrence Berkeley National Laboratory wurde 1999 in der Fachzeitschrift Physical Review Letters veröffentlicht.[3] Im folgenden Jahr wurde der Bericht zurückgezogen, da die beschriebenen Ergebnisse von anderen Wissenschaftlern nicht zu reproduzieren waren.[4][5] Im Juni 2002 gab der Direktor der Berkeley Labs bekannt, dass die ursprüngliche Veröffentlichung auf höchstwahrscheinlich gefälschten Daten beruht habe. Der Mitarbeiter Victor Ninov wurde verdächtigt, Zerfalls-Messwerte manipuliert zu haben. Ninov erklärte dagegen die Messapparatur für fehlerhaft und bestand auf seiner Unschuld.
Zunächst trug das Element den systematischen NamenUnunoctium (chemisches Symbol Uuo). Nach Meldungen planten die Entdecker, den Namen Moskowium für das neue Element vorzuschlagen, der dann von der IUPAC hätte bestätigt werden müssen. In den Medien wurde diese Bezeichnung bereits teilweise verwendet. Die amerikanische Gruppe um Ninov hatte zunächst zur Ehrung ihres Kollegen Albert Ghiorso, der entscheidend an der Entdeckung der Elemente 95 bis 106 beteiligt war, den Namen Ghiorsium, vorgesehen. Der Vorschlag wurde nach Ablehnung der Forschungsergebnisse jedoch obsolet.
Am 30. Dezember 2015 wurde die Entdeckung des Elements von der IUPAC offiziell anerkannt und dem Joint-Venture das Recht auf Namensgebung zugesprochen.[9] Am 8. Juni 2016 gab die IUPAC bekannt, dass für das Element der Name Oganesson (Og) nach dem wissenschaftlichen Leiter des russischen Instituts und Mitentdecker des Elements Juri Z. Oganesjan vorgeschlagen wurde; eine Widerspruchsfrist dazu endete am 8. November 2016.[10] Am 30. November 2016 wurde die offizielle Benennung von Oganesson bekannt gegeben.[11] Mit Moscovium (Mc) wurde gleichzeitig das Element 115 benannt.[10]
Die Endung -on wurde in Analogie zu den Namen der fünf im Periodensystem darüber anschließenden Edelgase gewählt. Helium, ganz oben in der Spalte, bildet die Ausnahme.[12]
Es wird vermutet, dass eine etwaige Elektronenkonfiguration in der äußeren Schale ein komplettes Elektronenoktett hat, weshalb Oganesson chemisch der Gruppe der Edelgase zugeordnet wird. Die Atomkerne zerfallen jedoch, bevor sich eine Elektronenkonfiguration mit Stabilität ausbildet. Chemische Eigenschaften sind deshalb nicht vorhanden bzw. nicht definierbar. Das Element wurde bisher nur indirekt anhand seiner typischen Zerfallsprodukte nachgewiesen.
Der Aggregatzustand von Oganesson ist undefiniert bzw. unbekannt, da nicht hinreichend viele Atome für die Bildung flüssiger oder gar fester Strukturen erzeugt werden können oder konnten. Oganesson liegt im Periodensystem auf der diagonalen Grenze zu den Halbmetallen. Das HalogenAstat, das ebenfalls auf dieser Diagonalen liegt, hat einen festen Aggregatzustand und ist vom Aussehen her eher metallisch.
Das schwerere Isotop294Og hat wie 294Ts die höchste experimentell nachgewiesene Massenzahl.
Berechnete atomare und physikalische Eigenschaften
Auf Grund relativistischer Effekte verhält sich Oganesson möglicherweise nicht wie ein Edelgas; diese Eigenschaft wird hingegen eher von Copernicium (Element 112) erwartet.[13] Andererseits verhält sich Copernicium chemisch ähnlich wie Quecksilber.[14]
Oganesson besitzt als einziges Gruppe-18-Element eine positive Elektronenaffinität und wäre damit chemisch reaktiv.[15][16][17] Weiterhin tritt im Oganesson-Atom eine außerordentlich starke Spin-Bahn-Kopplung auf (beim 7p-Valenzorbital mehr als 10 eV), die zu einem Verlust der äußeren Elektronenschalenstruktur führt.[18] Dies wiederum bewirkt, dass die äußeren Elektronen von Oganesson eher an ein uniformes Elektronengas (Fermi-Gas) erinnern; dies lässt eine extrem hohe Polarisierbarkeit und einen hohen Schmelzpunkt erwarten. Weiterhin wurde berechnet, dass kristallines Oganesson eine sehr kleine Bandlücke von lediglich 1,0–1,5 eV aufweisen sollte und damit im Gegensatz zu allen anderen Edelgaskristallen ein Halbleiter ist.[19]
↑Die von der Radioaktivität ausgehenden Gefahren gehören nicht zu den einzustufenden Eigenschaften nach der GHS-Kennzeichnung. In Bezug auf weitere Gefahren wurde dieses Element entweder noch nicht eingestuft oder eine verlässliche und zitierfähige Quelle hierzu wurde noch nicht gefunden.
↑Victor Ninov, K. E. Gregorich, W. Loveland, A. Ghiorso, D. C. Hoffman, D. M. Lee, H. Nitsche, W. J. Swiatecki, U. W. Kirbach, C. A. Laue, J. L. Adams, J. B. Patin, D. A. Shaughnessy, D. A. Strellis, P. A. Wilk: Observation of Superheavy Nuclei Produced in the Reaction of 86Kr with 208Pb. In: Physical Review Letters. Band83, Nr.6, August 1999, S.1104–1107, doi:10.1103/PhysRevLett.83.1104 (englisch, online frei verfügbar durch nuclear.ucdavis.edu [PDF; 83kB]).
↑Victor Ninov, K. E. Gregorich, W. Loveland, A. Ghiorso, D. C. Hoffman, D. M. Lee, H. Nitsche, W. J. Swiatecki, U. W. Kirbach, C. A. Laue, J. L. Adams, J. B. Patin, D. A. Shaughnessy, D. A. Strellis, P. A. Wilk: Editorial Note: Observation of Superheavy Nuclei Produced in the Reaction of 86Kr with 208Pb [Phys. Rev. Lett. 83, 1104 (1999)]. In: Physical Review Letters. Band89, Nr.3, Juli 2002, S.039901, doi:10.1103/PhysRevLett.89.039901 (englisch).
↑Yuri Ts. Oganessian, V. K. Utyonkov, Yu. V. Lobanov, F. Sh. Abdullin, A. N. Polyakov, R. N. Sagaidak, I. V. Shirokovsky, Yu. S. Tsyganov, A. A. Voinov, G. G. Gulbekian, S. L. Bogomolov, B. N. Gikal, A. N. Mezentsev, S. Iliev, V. G. Subbotin, A. M. Sukhov, K. Subotic, V. I. Zagrebaev, G. K. Vostokin, M. G. Itkis, K. J. Moody, J. B. Patin, D. A. Shaughnessy, M. A. Stoyer, N. J. Stoyer, P. A. Wilk, J. M. Kenneally, J. H. Landrum, J. F. Wild, R. W. Lougheed: Synthesis of the isotopes of elements 118 and 116 in the 249Cf and 245Cm+48Ca fusion reactions. In: Physical Review C. Band74, Nr.4, Oktober 2006, S.044602, doi:10.1103/PhysRevC.74.044602 (englisch).
↑Odile R. Smits, Jan‐Michael Mewes, Paul Jerabek, Peter Schwerdtfeger: Oganesson: A Noble Gas Element That Is Neither Noble Nor a Gas. In: Angewandte Chemie International Edition. Band59, Nr.52, 2020, S.23636–23640, doi:10.1002/anie.202011976, PMID 32959952.
↑Igor Goidenko, Leonti Labzowsky, Ephraim Eliav, Uzi Kaldor, Pekka Pyykkö: QED corrections to the binding energy of the eka-radon (Z=118) negative ion. In: Physical Review A. Band67, Nr.2, 28. Februar 2003, S.020102, doi:10.1103/PhysRevA.67.020102 (englisch, online frei verfügbar durch researchgate.net).
↑Jan-Michael Mewes, Paul Jerabek, Odile R. Smits, Peter Schwerdtfeger: Oganesson Is a Semiconductor: On the Relativistic Band-Gap Narrowing in the Heaviest Noble-Gas Solids. In: Angewandte Chemie International Edition. Band58, Nr.40, 2019, doi:10.1002/anie.201908327.