Berühmt wurde de Branges 1985 durch den Beweis der bieberbachschen Vermutung.[2] Er stellte den Beweis zunächst in einem 385-Seiten-Manuskript der Neuauflage seines Buches Square Summable Power Series dar und war enttäuscht, dass dies unter Kollegen in den USA wenig Resonanz fand und als undurchsichtig galt. Erst die intensive Diskussion nach einem Vortrag am Steklow-Institut in Leningrad 1984 mit sowjetischen Funktionentheoretikern (Isaak Moissejewitsch Milin, Galina Kusmina, A. Z. Grinshpan u. a.) führte zur Anerkennung des Beweises, der heute sehr viel kürzer dargestellt werden kann.[3] 1986 trug de Branges darüber auf dem ICM in Berkeley vor.[4]
1998 kündigte er einen Beweis der Riemannschen Vermutung an, der allerdings Fehler enthielt. 2004 publizierte er einen neuen Beweis auf seiner Website, der von der mathematischen Gemeinschaft jedoch überwiegend für nicht korrekt gehalten wird. Als nachteilig wirkt sich für de Branges auch aus, dass er in der Vergangenheit mehrfach Beweise bekannter Vermutungen angekündigt hatte, die sich dann als fehlerhaft herausstellten.[5] Der Beweisversuch baut auf seiner Theorie von Hilberträumenganzer Funktionen auf. In diesem Zusammenhang schlug er schon 1986 eine Strategie vor, die Riemannhypothese zu beweisen,[6] und der Weg über die de Branges Theorie ist auch von anderen Mathematikern wie Jeffrey Lagarias verfolgt worden.[7]
↑de Branges The Riemann hypothesis for Hilbert spaces of entire functions, Bulletin AMS, Band 15, 1986, S. 1–17. De Branges The convergence of Euler Products, Journal Functional Analysis, Band 107, 1992, S. 122–210.
↑Lagarias Hilbert spaces of entire functions and Dirichlet L-functions, in Pierre Cartier u. a. Frontiers in Number theory, physics and geometry, Band 1, Springer Verlag 2006.