Leibniz-Institut für Alternsforschung
|
Read other articles:
Peta infrastruktur dan tata guna lahan di Komune Lesseux. = Kawasan perkotaan = Lahan subur = Padang rumput = Lahan pertanaman campuran = Hutan = Vegetasi perdu = Lahan basah = Anak sungaiLesseux merupakan sebuah komune di departemen Vosges yang terletak pada sebelah timur laut Prancis. Lihat pula Komune di departemen Vosges Referensi INSEE lbsKomune di departemen Vosges Les Ableuvenettes Ahéville Aingeville Ainvelle Allarmont Ambacourt Ameuvel...
Mladen Krstajić Informasi pribadiNama lengkap Mladen KrstajićTanggal lahir 04 Maret 1974 (umur 50)Tempat lahir Zenica, YugoslaviaTinggi 1,91 m (6 ft 3 in)Posisi bermain BekKarier junior1984–1992 ČelikKarier senior*Tahun Tim Tampil (Gol)1992–1993 Senta 15 (1)1993–1996 Kikinda 55 (2)1996–2000 Partizan 84 (7)2000–2004 Werder Bremen 112 (11)2004–2009 Schalke 04 131 (7)2009–2011 Partizan 43 (3)Total 440 (31)Tim nasional1999–2008 Serbia 59 (2)Kepelatihan2011 ...
Grand Prix Jerman 2017Detail lombaLomba ke 9 dari 18Grand Prix Sepeda Motor musim 2017Tanggal2 Juli 2017Nama resmiGoPro Motorrad Grand Prix Deutschland[1][2][3]LokasiSachsenringSirkuitFasilitas balapan permanen3.671 km (2.281 mi)MotoGPPole positionPembalap Marc Márquez HondaCatatan waktu 1:27.302 Putaran tercepatPembalap Jonas Folger YamahaCatatan waktu 1:21.442 di lap 4 PodiumPertama Marc Márquez HondaKedua Jonas Folger YamahaKetiga Dani Pedros...
Rotation of the plane of linearly polarized light as it travels through a chiral material Not to be confused with circularly polarized light. Operating principle of a polarimeter for measuring optical rotation. 1. Light source 2. Unpolarized light 3. Linear polarizer 4. Linearly polarized light 5. Sample tube containing molecules under study 6. Optical rotation due to molecules 7. Rotatable linear analyzer 8. Detector Optical rotation, also known as polarization rotation or circular birefring...
French dancer and actress (born 1952) This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Sonia Petrovna – news · newspapers · books · scholar · JSTOR (April 2019) (Learn how and when to remove this...
1 Tawarikh 7Kitab Tawarikh (Kitab 1 & 2 Tawarikh) lengkap pada Kodeks Leningrad, dibuat tahun 1008.KitabKitab 1 TawarikhKategoriKetuvimBagian Alkitab KristenPerjanjian LamaUrutan dalamKitab Kristen13← pasal 6 pasal 8 → 1 Tawarikh 7 (atau I Tawarikh 7, disingkat 1Taw 7) adalah pasal ketujuh Kitab 1 Tawarikh dalam Alkitab Ibrani dan Perjanjian Lama di Alkitab Kristen. Dalam Alkitab Ibrani termasuk dalam bagian Ketuvim (כְּתוּבִים, tulisan).[1] Pasal ini berisi ...
Scholastique MukasongaBiographieNaissance 20 décembre 1956 (67 ans)Province de Gikongoro (Ruanda-Urundi)Nationalités rwandaisefrançaiseActivité ÉcrivaineAutres informationsSite web scholastiquemukasonga.net/frDistinctions Liste détailléePrix Renaudot (2012)Prix Ahmadou-Kourouma (2012)Prix Simone-de-Beauvoir pour la liberté des femmes (2021)Chevalier des Arts et des LettresŒuvres principales Notre-Dame du Nil, La femme au pieds nus (d)modifier - modifier le code - modifier Wikida...
† Человек прямоходящий Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:Синапсиды�...
This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (September 2022) (Learn how and when to remove this message) 139th Airlift Squadron139th Airlift Squadron – Lockheed LC-130H Hercules 93-1096Active1942–1944; PresentCountry United StatesAllegiance New YorkBranch Air National GuardTypeSquadronRoleSpecialized AirliftPart ofNew York Air Natio...
Численность населения республики по данным Росстата составляет 4 003 016[1] чел. (2024). Татарстан занимает 8-е место по численности населения среди субъектов Российской Федерации[2]. Плотность населения — 59,00 чел./км² (2024). Городское население — 76,72[3] % (20...
Музей природы и экологии Республики БеларусьМузей прыроды і экалогіі Рэспублікі Беларусь Дата основания 25 июля 1983 года Дата открытия Февраль 1992 года Местонахождение Минск Адрес г. Минск, улица Карла Маркса, д.12, каб.11 Сайт pryroda.histmuseum.by/ru/ Медиафайлы на Викискладе Музей ...
Underground communist party in Afghanistan This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: Communist (Maoist) Party of Afghanistan – news · newspapers · books · scholar · JSTOR (January 2011) (Learn ho...
习近平 习近平自2012年出任中共中央总书记成为最高领导人期间,因其废除国家主席任期限制、开启总书记第三任期、集权统治、公共政策与理念、知识水平和自述经历等争议,被中国大陸及其他地区的民众以其争议事件、个人特征及姓名谐音创作负面称呼,用以恶搞、讽刺或批评习近平。对习近平的相关负面称呼在互联网上已经形成了一种活跃、独特的辱包亚文化。 权力�...
1978 British filmThe Thief of BaghdadTheatrical posterDirected byClive DonnerWritten byAndrew BirkinAJ CarothersProduced byThomas M.J. JohnstonAida YoungStarringRoddy McDowall Kabir BediTerence StampPeter UstinovCinematographyDennis C. LewistonEdited byPeter TannerMusic byJohn CameronProductioncompaniesPalm Films, Ltd.Victorine StudiosDistributed byColumbia Pictures (International) National Broadcasting Company (US)Release date 23 November 1978 (1978-11-23) (US) Running ti...
2013 murder trial in Florida, United States Florida v. ZimmermanCase Number 592012CF001083ACourt18th Judicial Circuit in and for Seminole County, FloridaFull case nameState of Florida v. George Zimmerman SubmittedApril 11, 2012DecidedJuly 13, 2013 (2013-07-13)VerdictNot guiltyChargeSecond-degree murder Manslaughter (lesser included offense) Court membershipJudge sittingDebra NelsonCase opinionsDecision byJury verdict State of Florida v. George Zimmerman was a criminal prosecuti...
Metis FlagUseBlue versionAdopted1816DesignInfinity symbol on a blue background UseRed versionAdopted1815DesignInfinity symbol on a red background The Métis flag was first used by Métis resistance fighters in Rupert's Land before the 1816 Battle of Seven Oaks. According to only one contemporary account, the flag was said to be a gift from the North West Company in 1815,[1][2][3] but no other surviving accounts confirm this. Both the red and blue versions of the flag ...
Legge sulla propaganda omosessualeTitolo estesoper lo scopo di proteggere i minori dalle informazioni che promuovono una negazione dei valori familiari tradizionali Stato Russia Tipo leggeIndicazioni operative sulla propaganda LegislaturaVII ProponenteYelena Mizulina SchieramentoRussia Unita Promulgazione30 giugno 2013 A firma diVladimir Putin TestoПравительство РФ рассматривает вопрос о проведении праздничных мероприятий...
Gävleborg Gävleborgs länDaerah di Swedia Lambang kebesaran NegaraSwediaIbu KotaGävlePemerintahan • GubernurBarbro Holmberg • Dewan KotaLandstinget GävleborgLuas • Total18.191 km2 (7,024 sq mi)Populasi (30 Juni 2014)[1] • Total279.333 • Kepadatan15/km2 (40/sq mi)Zona waktuUTC+1 (CET) • Musim panas (DST)UTC+2 (CEST)PDB NominalSEK 60,417 juta (2004)PDB per kapitaSEK 218.000NUTS Regi...
Sampul muka cetakan Hamlet tahun 1605 The Tragedy of Hamlet, Prince of Denmark, atau biasanya disingkat Hamlet adalah sandiwara tragedi karya William Shakespeare yang ditulis sekitar tahun 1599-1601. Drama ini adalah salah satu tragedi Shakespeare yang terkenal. Terjemahan ke dalam bahasa Indonesianya berjudul Hamlet, Pangeran Denmark dan dilakukan oleh Trisno Sumardjo.[1] Tragedi ini menceritakan tentang seorang raja yang meninggal dengan misterius, jandanya lalu menikah dengan sauda...
هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (نوفمبر 2022) في الرياضيات، يسمى الفضاء الطوبولوجي القابل للفصل إذا كان يحتوي على مجموعة فرعية كثيفة قابلة للعد؛ وهذا يعني أنه يوجد متتالية { x n } n = 1 ∞ {\displaystyle \{x_{n}\}_{n=1}...