Klassifizierung der Sterne

Dieser Artikel behandelt die Klassifizierung von Sternen in der Astronomie, dazu werden im Folgenden verschiedene Klassifizierungen kurz aufgeführt und gegebenenfalls im Detail behandelt.

Einleitung

Die Klassifizierung von Sternen ist ein wichtiger Bestandteil der Astronomie. Dank verbesserter Technik können Sterne in immer genauer definierte Kategorien eingeteilt werden. In der modernen Astronomie spielen zwei Eigenschaften von Sternen eine entscheidende Rolle: dies sind einerseits die absolute Helligkeit resp. Leuchtkraft eines Sterns, andererseits das Farbspektrum, welches im Wesentlichen abhängig von der Oberflächentemperatur des Sterns ist. Oftmals wird das Farbspektrum des Sterns als Spektralklasse kategorisiert.

Messbare Eigenschaften

Helligkeitsmessung

Die Helligkeit eines Sterns wird üblicherweise als scheinbare Helligkeit in einem definierten Wellenlängenbereich gemessen. Weit verbreitet ist dabei das visuelle V-Band, welches in etwa dem menschlichen Helligkeitsempfinden entspricht. Bestimmt man die scheinbare Helligkeit innerhalb mehrerer Filterbänder und kalibriert die Werte gegeneinander, so spricht man von einem photometrischen System. Durch Vergleich dieser kalibrierten Werte lassen sich die sogenannten Farbindizes ermitteln. Wenn zusätzlich die Entfernung bestimmt werden kann, zum Beispiel mittels der Methode der Parallaxe, so kann durch Kombination mit der gemessenen scheinbaren Helligkeit die absolute Helligkeit eines Sterns im entsprechenden Filterband ermittelt werden.

Farbspektrum des Sterns, respektive Spektralklasse

Das Farbspektrum eines Sternes zeigt vielerlei Spektrallinien. Diese können gemessen werden, indem man das Sternenlicht spektroskopiert. Die Verteilung dieser Spektrallinien hängt im Wesentlichen von der Oberflächentemperatur des Sterns ab, wird aber auch erheblich von seiner chemischen Zusammensetzung beeinflusst. Die Metallizität gibt hierbei die Verunreinigung des Sterns mit Elementen an, die nicht Wasserstoff oder Helium sind.

Interpretation

Eine wichtige Klassifikation ist die sogenannte MK- respektive Yerkes-Klassifikation bestehend aus Spektralklasse und Leuchtkraftklasse. Die Spektralklasse lässt sich anhand der Spektrallinien nachweisen. Das Konzept der Spektralklasse bildet einen wichtigen Pfeiler bei der Kategorisierung von Sternen, ist aber für sich alleine nicht aussagekräftig, da äußerst unterschiedliche Sterne in dieselbe Spektralklasse fallen können. Mit der absoluten Helligkeit bekommt man eine zweite grundlegende Eigenschaft, um Sterne einzuteilen. Diese ist jedoch deutlich schwieriger zu messen, was vor allem auf die schwierig zu bestimmende Entfernung zurückzuführen ist. Eine Möglichkeit zur Lösung dieses Problems ist, die absolute Helligkeit respektive die Leuchtkraft ebenfalls indirekt aus dem Sternspektrum abzuleiten. Dies ist die sogenannte Leuchtkraftklasse des MK-Systems. Physikalisch betrachtet hängt die Spektralklasse von der Oberflächentemperatur des Sterns ab, während die Leuchtkraftklasse von der Oberflächengravitation des Sterns abhängt.

Bedeutung für eine Aussage über die Sterneigenschaften

Die absolute Helligkeit eines Sterns hängt zu einem entscheidenden Teil von seiner Masse sowie seinem Entwicklungszustand ab. Üblicherweise werden Sterne mit fortlaufendem Alter immer heller. Die Leuchtkraftklasse eines Sterns ist durch Eigenschaften bestimmt, die von seiner Leuchtkraft abhängen; dies sind insbesondere die Breite und die Stärke (Höhe) der Spektrallinien. So haben Riesensterne eine geringere Schwerebeschleunigung in ihrer Photosphäre als Zwergsterne gleicher Temperatur, was eine geringere Druckverbreiterung der Linien bewirkt, wogegen die Spektralklasse Eigenschaften berücksichtigt, die primär von seiner Oberflächentemperatur abhängen.

Darstellung der Eigenschaften

Darstellung aller Sterne des Gaia-DR2-Katalogs in einem Farben-Helligkeitsdiagramm. Das dicke diagonale Band entspricht der Hauptreihe (englisch Main Sequence), während das schmale Band unten links aus Weißen Zwergen gebildet wird.

Die Werte für Spektralklasse und absolute Helligkeit werden im Hertzsprung-Russell-Diagramm dargestellt. Dort erkennt man die sogenannte Hauptreihe, ein Band von Sternen mit definierter Spektralklasse und korrespondierender absoluter Helligkeit. Die Hauptreihe existiert, weil Sterne sich im Verlauf ihrer Entwicklung am längsten im Stadium des stabilen Wasserstoffbrennens befinden. Während dieser Phase ändern die Spektralklasse sowie auch die absolute Helligkeit nur wenig. Die Position eines Sterns innerhalb der Hauptreihe hängt hauptsächlich von seiner Ausgangsmasse (ZAMS) ab. Erst wenn das stabile Wasserstoffbrennen endet, beginnt bei massereicheren Sternen die Bewegung weg von der Hauptreihe auf den sogenannten Riesenast. Es existieren verschiedene alternative Darstellungsmöglichkeiten, um die Eigenschaften der Sterne zu visualisieren. Eine davon ist das Farben-Helligkeits-Diagramm, wobei Farbindizes anstelle der Spektralklasse dargestellt werden. Die bekanntesten Populationen wie Hauptreihe und Riesenäste sind auch in diesen Darstellungen erkennbar. Dank moderner Durchmusterungsprogramme wie zum Beispiel der Raumsonde Gaia, konnten diese Eigenschaften mittlerweile für Milliarden von Sternen ermittelt werden und erlauben so eine systematische Analyse der Verteilung der Sterne in einem solchen Diagramm. Dies ermöglicht unter anderem detailliertere Rückschlüsse auf den Prozess der Sternentwicklung.

Weitere Eigenschaften

Einige weitere Eigenschaften führen in Kombination zu einer Vielzahl von beschriebenen Phänomenen und Sternklassen. Viele dieser Eigenschaften sind beliebig kombinierbar und führen daher meist nicht direkt zu einer Aussage über das untersuchte Sternsystem, sondern wie bereits erwähnt erst in der Summe der Eigenschaften. Da nicht alle Phasen der Sternentwicklung vollständig verstanden sind, stehen diese zum Teil in einem unklaren Verhältnis zueinander. Dies, da viele Kategorien entweder phänomenologisch und/oder theoretisch begründet sind und sich somit kein einheitliches Bild ergibt. Einige Beispiele für diese weiteren Eigenschaften:

Art Einfluss
Doppelstern Doppelsternsysteme können aufgrund von Wechselwirkungen mit dem Partner eine wesesentlich abweichende Zusammensetzung und Entwicklung haben. Außerdem können sie zusammen beobachtbare Phänomene erzeugen, die nach ihrer Art kategorisiert werden können.
Riesenstern Im Verlauf des Alterungsprozesses durchlaufen Riesensterne mehrere Phasen – teilweise in einer sehr kurzen Zeitspanne. Diese haben erheblichen Einfluss auf die gemessenen Eigenschaften. Während einige Phasen gut verstanden sind, werden andere bisher nur phänomenologisch beobachtet mit mehreren theoretischen Erklärungen als mögliche Ursache.
Pekuliäre Sterne Pekuliäre Sterne haben eine abweichende chemische Zusammensetzung. Dies kann vielfältige Ursachen haben.
Veränderliche Sterne Einige Sterne zeigen Variabilität in ihren Lichtkurven. Dies kann verschiedenste Ursachen haben und wird entsprechend auch in eine Vielzahl von Kategorien eingeteilt. Das Verständnis einiger Phänomene der Variabilität hat erheblich beigetragen zum besseren Verständnis der Sternentwicklung sowie zum besseren Verständnis der Prozesse im Weltraum allgemein.
Neutronensterne und Schwarze Löcher Neutronensterne und Schwarze Löcher sind im sichtbaren Licht nicht nachzuweisen. Neutronensterne können jedoch als Pulsare im elektromagnetischen Spektrum nachgewiesen werden. Durch Wechselwirkung untereinander oder mit anderen Sternen können sie eine Vielzahl an Phänomenen erzeugen, die auch im sichtbaren Licht nachweisbar sind.

MK- respektive Yerkes-Klassifikation

Die MK-Klassifikation – nach den Anfangsbuchstaben der Nachnamen von William Wilson Morgan und Philip C. Keenan, die das System zuerst entwickelten[1] – auch Yerkes-Klassifikation – nach dem Yerkes-Observatorium, an dem beide arbeiteten – und als MKK-System bezeichnet, wurde 1943 von William Wilson Morgan, Phillip C. Keenan und Edith Kellman eingeführt.

Dabei handelt es sich um ein zweiteiliges Klassifikationsschema, welches sich aus Spektraltypen und der Leuchtkraftklassen zusammensetzt, wobei die Leuchtkraftklasse eng mit der absoluten Helligkeit verknüpft ist. Die beiden Teile, vor allem die Spektraltypen, können auch einzeln zur Klassifikation von Sternen eingesetzt werden.

Spektraltypen durch Spektren

Die Spektralklassen repräsentieren verschiedene Bereiche von Oberflächentemperaturen. Die Klassifikation erfolgt aufgrund von Spektrallinien (Absorptions- und Emissionslinien) in den Spektren der Sterne. Das Vorhandensein von Spektrallinien hängt direkt mit der Oberflächentemperatur eines Sterns zusammen, da je nach Temperaturen verschiedene Elemente ionisiert werden können. Es hat sich eingebürgert, die Spektralklassen O bis A als frühe Spektralklassen, F bis G als mittlere Spektralklassen und die übrigen als späte Spektralklassen zu bezeichnen. Die Bezeichnungen früh, mittel und spät entstammen der inzwischen überholten Annahme, die Spektralklasse sage etwas über den Entwicklungsstand eines Sterns aus. Trotz dieser irrtümlichen Einteilung sind diese Bezeichnungen noch heute in Gebrauch, und ein Stern gilt als früher oder später, wenn seine Spektralklasse im Vergleich zu der eines anderen näher an der Klasse O oder an der Klasse M liegt.

Um die Sterne genauer klassifizieren zu können, werden die Spektren weiterhin in den einzelnen Klassen von 0 bis 9 abgestuft (M0 ist also heißer als M9). Mit zunehmend besseren Instrumenten konnte im Laufe der Zeit feiner unterschieden werden, so dass Zwischenklassen definiert wurden, zum Beispiel gibt es zwischen B0 und B1 mittlerweile sogar drei zusätzliche Klassen, die B0.2, B0.5, und B0.7 genannt werden. Die Spektralklassen mit ihren sieben Grundtypen (O, B, A, F, G, K, M) machen rund 99 % aller Sterne aus, weshalb die anderen Klassen oft vernachlässigt werden.

Klasse Charakteristik Farbe Temperatur in K[2][3][4] typ. Masse
für Haupt­reihe (M)[2][3][4]
Beispielsterne
O ionisiertes Helium (He II) blau 30000–50000 >18 Mintaka (δ Ori), Naos (ζ Pup)
B neutrales Helium (He I), Balmer-Serie Wasserstoff blau-weiß 10000–30000 005 Rigel, Spica, Achernar
A Wasserstoff, Calcium (Ca II) weiß (leicht bläulich) 07500–10000 001,9 Wega, Sirius, Altair
F Calcium (Ca II), Auftreten von Metallen weiß-gelb 06000–07500 001,4 Prokyon, Canopus, Polarstern
G Calcium (Ca II), Eisen und andere Metalle gelb 05300–06000 001,0 Tau Ceti, Sonne, Alpha Centauri A
K starke Metalllinien, später Titan(IV)-oxid orange 03900–05300 000,7 Arcturus, Aldebaran, Epsilon Eridani, Albireo A
M Titanoxid rot-orange 02300–03900 000,3 Beteigeuze, Antares, Kapteyns Stern, Proxima Centauri

Spektralklassen außerhalb der Standardsequenzen

Einige Objekte lassen sich nicht in die sieben Standardsequenzen einteilen und werden dennoch mit einer Spektralklasse versehen. Das sind die Folgenden:

Leuchtkraftklassen (Entwicklungszustand)

Die Leuchtkraftklasse eines Sterns ist durch Eigenschaften bestimmt, die von seiner Leuchtkraft abhängen; dies sind insbesondere die Breite und die Stärke (Höhe) der Spektrallinien. So haben Riesensterne eine geringere Schwerebeschleunigung in ihrer Photosphäre als Zwergsterne gleicher Temperatur, was eine geringere Druckverbreiterung der Linien bewirkt, wogegen die Spektralklasse Eigenschaften berücksichtigt, die primär von seiner Oberflächentemperatur abhängen.

Da die Leuchtkraft eines Sternes in physikalischen Einheiten von seiner Masse, der Größe seiner Oberfläche und seiner Effektivtemperatur abhängt, lässt sich allein mit dem Wert der Leuchtkraft noch keine Aussage über die Leuchtkraftklasse machen; so kann z. B. ein Stern mit der ca. 100-fachen Leuchtkraft der Sonne ein Hauptreihenstern, ein Unterriese oder ein Riese sein. Zur Ermittlung der Leuchtkraftklasse benötigt man zusätzlich die Angabe der Spektralklasse. Ist diese z. B. M0, so wäre ein Stern mit hundertfacher Sonnenleuchtkraft ein Roter Riese, die vollständige Klassifizierung im MK-System (s. u.) würde M0III lauten.

Leuchtkraftklasse Sterntyp
0 Hyperriese
I Überriese
Ia-0, Ia, Iab, Ib Unterteilung der Überriesen nach abnehmender Leuchtkraft
II heller Riese
III „normaler“ Riese
IV Unterriese
V Zwerg (Hauptreihenstern)
VI oder sd (präfix) Unterzwerg
VII oder D (präfix) Weißer Zwerg

Die Leuchtkraftklasse gibt den Entwicklungsstand eines Sternes an, von denen ein Stern in seinem Leben mehrere durchläuft.

Wenn der „Geburtsvorgang“ eines Sternes abgeschlossen ist, ist er in der Regel ein Hauptreihenstern (V). Sollte seine chemische Zusammensetzung stark von der der anderen Sterne abweichen, und zwar derart, dass in seiner Atmosphäre wesentlich weniger Metalle enthalten sind, kann dieser Stern auch als Unterzwerg (VI) klassifiziert werden. Bei den heißen Sternen, mit den Spektralklassen O und B, hat die Hauptreihe sogar eine größere Dicke und umfasst dort auch die Leuchtkraftklassen IV und III. Dies hängt damit zusammen, dass die dortigen massereichen Sterne eine nicht-konvektive äußere Hülle haben, sodass die Metallizität über die Opazität einen größeren Einfluss auf den Energietransport hat.

Präfixe- und Suffixe

Bei Abweichungen vom definierten Standard helfen Präfixe und Suffixe, um die Einteilung genauer zu machen (siehe → Spektralklasse#Prä- und Suffixe). Einiger dieser Prä- und Suffixe sind durch die Einführung der Leuchtkraftklasse im MK-System obsolet.

Beispielsterne klassifiziert nach MK und Sternklasse

Stern Spektralklasse Leuchtkraftklasse Sternklasse Kommentar
Sonne G2 V Gelber Zwerg
Sirius A A1 V Hauptreihenstern der Spektralklasse A Insgesamt als A1 Vm klassifiziert wegen starker Metalllinien
Mintaka Aa1 O9.5 II Riesenstern der Spektralklasse O Hellste Komponente in einem Mehrfachsternsystem
Canopus F0 Ib Überriese
Aldebaran K5 III Roter Riese
Kapteyns Stern M1 (sd) präfix Kühler Unterzwerg
HW Virginis B (sd) präfix Heißer Unterzwerg Doppelsternsystem mit einem Roten oder Braunen Zwerg

UBV-System

Darstellung der UBV-Filter und ihrer Transmission nach Wellenlänge

Beim UBV-System handelt es sich um ein Photometrisches System, das ebenfalls benutzt werden kann, um Sterne einzuteilen, wobei Farbindizes die Rolle der Spektralklasse übernehmen. Darin stehen:

  • U für die Helligkeit im ultravioletten Licht mit der Schwerpunktwellenlänge von 365 nm
  • B für die Helligkeit bei 440 nm (Blau)
  • V für die Helligkeit bei 550 nm (Gelb); V steht dabei für visuell, da das menschliche Auge Sterne im gelblichen Bereich am stärksten wahrnimmt.

Anhand dieser Bezugsgrößen werden im UBV-System drei Farbindizes gebildet: U-B, U-V und B-V, wobei letzterer für visuelle Beobachter die größere Bedeutung hat und z. B. oft in Sternkatalogen angegeben wird. Wie die untenstehende Tabelle zeigt, korreliert der (B-V)-Farbindex dabei im groben Rahmen mit der Spektralklasse.

Beispiele

Stern (B-V)-Farbindex Spektralklasse Farbe
Spica −0,23 B1 blau
Rigel ±0,00 B8 bläulichweiß
Deneb +0,09 A2 weiß
Sonne +0,65 G2 gelblich
119 Tauri +2,06 M2 tiefrot

Sternkataloge

Sternkataloge dienen dazu, die große Anzahl von Sternen nach verschiedenen Eigenschaften in Buchform zu listen oder auf Datenbanken zu speichern. Die wichtigsten dieser Parameter sind:

Sternkataloge haben unterschiedliche Zwecke. Es gibt ausführliche Kataloge mit Daten einer Durchmusterung und Millionen oder noch mehr Sternen (wie den Tycho-2-Katalog oder Gaia DR2). Andererseits gibt es spezialisierte Kataloge wie die Fundamentalkataloge mit den Daten ausgewählter Sterne über lange Zeiträume. Ein weiteres Beispiel für einen Spezialkatalog wäre der General Catalogue of Variable Stars.

Sternklassen

Neben der systematischen Einteilung von Sternen gibt es auch eine Vielzahl sogenannter Sternklassen oder Sternkategorien. Diese Sternklassen folgen verschiedenen Klassifikationsschemata und werden meist in einem Sternkatalog oder einer Datenbank definiert. Dabei kann ein Stern durchaus auch zu mehreren Sternklassen gehören oder in einem Doppelsternsystem zusammengesetzt sein aus mehreren Sternklassen, wovon eine das Doppelsternsystem selbst beschreibt (z. B. AM-Herculis-Stern).

Nachfolgend ein paar Beispiele, welche Arten von Sternklassen es gibt:

  • Typen, die im MK-System bereits einfach beschrieben werden können, wie Gelber Zwerg oder Roter Riese
  • Einige Sternklassen basieren auf der Spektralklasse und einem Suffix, wie zum Beispiel die Be-Sterne oder die Am-Sterne
  • Weitere haben eine Farbe im Namen (z. B. Blaue Nachzügler): es gibt einen ähnlichen Verlauf wie bei der Spektralklasse
    • blaue Sternklassen habe eine hohe Oberflächentemperatur
    • gelbe Sternklassen sind vergleichbar zur Sonne
    • rote Sternklassen eine tiefe Oberflächentemperatur für einen Stern
  • Viele weitere Sternklassen basieren auf einem Prototyp, der diese Sternklasse ursprünglich definiert hat. Dies ist vor allem bei Veränderlichen Sternen der Fall. Man muss aber nicht davon ausgehen, dass ein ähnlicher Name eine verwandte Sternklasse beschreibt – meist befindet sich einfach der Prototyp mehrerer Sternklassen im selben Sternbild. Durch den systematischen Namen gleichen sich die darauf basierenden Sternklassen im Namen, obwohl kein weiterer Zusammenhang besteht (z. B. W-Virginis-Stern und HW-Virginis-Stern, siehe auch → Benennung veränderlicher Sterne).

Populationen (Metallhäufigkeit)

Mit Hilfe der Metallhäufigkeit ordnet man Sterne außerdem in Populationen, was Rückschlüsse auf deren Alter ermöglicht. Populationen entsprechen grob der Entstehungszeit eines Sterns, da sich die Metalle im Laufe der Nukleosynthese in Galaxien stets weiter anreichern. In anderen Galaxien als der Milchstraße können solche Populationen anders definiert sein als in der Milchstraße. So sind zum Beispiel alle Sterne in den Magellanschen Wolken verglichen mit den Sternen in der Milchstraße metallarm. Die folgende Tabelle zeigt die grobe Einordnung der Sterne bezüglich Population auf.

Klasse Zuordnung
Extreme Population I Metallreiche neu entstandene Sterne.
Population I Sterne mit solarer Metallhäufigkeit, typischerweise einige Milliarden Jahre alt.
Population II Sterne mit geringer Metallhäufigkeit, aus der Entstehungszeit der Milchstraße.
Population III Postulierte Population von Sternen ohne Metalle, aus der Anfangszeit des Universums. Obwohl es offensichtlich Sterne der Population III gegeben haben muss, werden heute keine solchen Sterne beobachtet. Daraus schließt man, dass die Population III nur aus relativ massereichen und daher kurzlebigen Sternen bestand.

Geschichte (frühere Klassifikationen)

Bereits in der babylonischen Astronomie – übernommen vom griechischen Astronomen Hipparch – wurden Sterne nach der sogenannten „Größenklasse“ (auch „Magnitudo“ genannt) basierend auf ihrer scheinbaren Helligkeit geordnet wie sie von der Erde aus zu beobachten sind. Diese freiäugige Skala (Sterne 1. bis 6. Größe) wurde 1850 streng logarithmisch definiert und erweitert. Heute reicht sie bis zu den schwächsten Sternen 25. Größe, die mit den größten Teleskopen gerade noch aufgelöst werden können.

Da die scheinbare Helligkeit den Anforderungen der modernen Astronomie bereits zu Beginn des 20. Jahrhunderts nicht mehr genügte, wurde die absolute Helligkeit als neues Maß eingeführt. Nach ihr wird jeder Stern normiert auf jene Größenklasse, die der Stern in einer Entfernung von 10 Parsecs (32 Lichtjahre) scheinbar leuchten würde. Diese auch Leuchtkraft genannte Energieabstrahlung gehört zu den wichtigsten Zustandsgrößen der Astrophysik und bildet die Basis für die Klassifikation der Sternfamilien im Hertzsprung-Russell-Diagramm (HRD).

19. und 20. Jahrhundert

Erste Versuche, Ordnung in die Helligkeit und Temperatur von Sternen zu bringen, hatten im Jahr 1865 der italienische Pater Angelo Secchi mit einer dreistufigen Skala unternommen und 1874 Hermann Carl Vogel mit einem System, in das auch die bis dahin bekannten Sternentwicklungstheorien eingeflossen waren, was zu ständigen Änderungen führte. Im Jahre 1868 entwickelte Angelo Secchi folgende vier Grundtypen:

  • Typ I: weiße und blaue Sterne mit einer starken Wasserstofflinie (A-Klasse)
  • Typ II: gelbe Sterne mit einer schwachen Wasserstofflinie, aber zahlreichen Metall-Linien (G und K-Klasse)
  • Typ III: orange bis rote Sterne mit komplexen Banden (M-Klasse)
  • Typ IV: rote Sterne mit signifikanten Kohlenstofflinien und Banden (Kohlenstoffsterne)

1878 fügte er eine weitere hinzu:

Aufbauend auf umfangreichen Spektren von Henry Draper wurde eine neue Klassifikation erarbeitet. Edward Charles Pickering begann im Jahre 1890, zusammen mit Williamina Fleming, Antonia Maury und Annie Jump Cannon entsprechende Arbeiten. Dabei ging Pickering alphabetisch vor und ordnete die Klassen mit Großbuchstaben von A bis Z nach der Balmer-Serie (Übergänge der Elektronenbahnen im Wasserstoffspektrum). Durch weitere Forschungen wurde dieses Schema durch die sogenannte Harvard-Klassifikation ersetzt, die eine Unterteilung in die Typen A-Q vorsah.

Annie Jump Cannon stellte jedoch sehr bald fest, dass die Reihenfolge nicht sinnvoll war: nach der Abstufung kamen die blau-weiß leuchtenden, heißen O-Sterne nach den roten, relativ kühlen M- und N-Sternen. Ferner stellte sich heraus, dass einige der Klassen nur auf Belichtungsfehlern beruhten, oder aber keinen Sinn hatten und daher wegfallen konnten. Die Abstufung wurde nicht mehr vom Spektrum, sondern von der Temperatur der Sterne abhängig gemacht. Aufgrund dieser Erkenntnisse wurde die bisherige Unterteilung um 1912 umsortiert, und es folgte die heute verwendete Unterteilung in die sieben oben genannten Spektralklassen.

Schematischer Vergleich der Spektralklassen O bis M

Um 1950 definierte man eine Skala von I (Überriesen) bis V (Hauptreihensterne, früher „Zwerge“ genannt) zur Einteilung nach Leuchtkraft. Sie wurde später um 0, Ia, Ib, VI (Unterzwerge) und VII (Weiße Zwerge) ergänzt, woraus letztlich die Leuchtkraftklasse des MK-Systems entstand.

Siehe auch

Literatur

  • The Classification of Stars (englisch) – Taschenbuch von Jaschek & Jaschek, veröffentlicht von Cambridge University Press, im July 1990; ISBN 0-521-38996-8, bibcode:1990clst.book.....J
  • Joachim Krautter u. a.: Meyers Handbuch Weltall. 7. Auflage. Meyers Lexikonverlag, 1994, ISBN 3-411-07757-3.
  • Arnold Hanslmeier: Einführung in Astronomie und Astrophysik. 2. Auflage. Spektrum Akademischer Verlag, 2007, ISBN 978-3-8274-1846-3.
  • R. F. Garrison: The MK Process and Stellar Classification. In: R. F. Garrison (Hrsg.): The MK Process and Stellar Classification. Proceedings of the Workshop in Honor of W. W. Morgan and P. C. Keenan, held at the University of Toronto, Canada, June 1983. David Dunlap Observatory – University of Toronto, Toronto 1984, ISBN 0-7727-5801-8.
  • Carlos Jaschek, Mercedes Jaschek: The classification of stars. Cambridge University Press, Cambridge u. a. 1987, ISBN 0-521-26773-0.
  • Theodor Schmidt-Kaler: Physical Parameters of Stars. In: K.-H. Hellwege (Hrsg.): Landolt-Börnstein. Zahlenwerte und Funktionen aus Naturwissenschaften und Technik. = Numerical data and functional relationships in science and technology. Gruppe 6: Astronomie, Astrophysik und Weltraumforschung. = Astronomy, astrophysics and space research. Band 2: Astronomie und Astrophysik, Weiterführung und Ergänzung von Bd. 1. Teilband b: K. Schaifers, H. H. Voigt (Hrsg.): Sterne und Sternhaufen. New Series. Springer-Verlag, Berlin u. a. 1982, ISBN 3-540-10976-5.
  • (speziell zum Abschnitt „Geschichte“:) J. B. Hearnshaw: The Analysis of Starlight: One Hundred and Fifty Years of Astronomical Spectroscopy. Cambridge University Press, Cambridge (UK) 1990, ISBN 978-0-521-39916-6.

Einzelnachweise

  1. Die Entwicklung von Sternen (Memento vom 5. März 2016 im Internet Archive) (PPT-Datei, ~ 1,6 MB; HTML-Version) – Seminarvortrag bei der HU-Berlin
  2. a b Eric Mamajek: A Modern Mean Dwarf Stellar Color and Effective Temperature Sequence. 16. April 2022, abgerufen am 1. Mai 2022.
  3. a b Mark J. Pecaut, Eric E. Mamajek: Intrinsic Colors, Temperatures, and Bolometric Corrections of Pre-main-sequence Stars. In: The Astrophysical Journal Supplement Series. 208. Jahrgang, 1. September 2013, ISSN 0067-0049, S. 9, doi:10.1088/0067-0049/208/1/9, arxiv:1307.2657 (harvard.edu).
  4. a b G. M. H. J. Habets, J. R. W. Heinze: Empirical bolometric corrections for the main-sequence. In: Astronomy and Astrophysics Supplement Series. 46. Jahrgang, November 1981, S. 193–237 (Tables VII and VIII), bibcode:1981A&AS...46..193H. – Luminosities are derived from Mbol figures, using Mbol(☉)=4.75.

Read other articles:

Not to be confused with the minor planet 2060 Chiron. Largest natural satellite of Pluto CharonCharon as imaged by the New Horizons spacecraft, July 2015. A massive fault system, Serenity Chasma, crosses Charon's face, while Charon's north pole is covered by Mordor Macula, a region covered in dark organic materialDiscoveryDiscovered byJames W. ChristyDiscovery dateJune 22, 1978DesignationsDesignationPluto I[1]Pronunciation/ˈkɛərɒn, -ən/ KAIR-on, -⁠ən[2&...

 

 

French philosopher Jean HyppoliteBust of Jean Hyppolite by Jean-Marie MeslinBorn8 January 1907 (1907-01-08)Jonzac, Poitou-Charentes, FranceDied26 October 1968 (1968-10-27) (aged 61)Paris, FranceAlma materÉcole Normale SupérieureEra20th-century philosophyRegionWestern philosophySchoolContinental philosophyMain interestsHistory of philosophy Jean Hyppolite (French pronunciation: [ʒɑ̃ ipɔlit]; 8 January 1907 – 26 October 1968) was a French philosopher know...

 

 

Parliamentary constituency in the United Kingdom, 2005 onwards Kirkcaldy and CowdenbeathCounty constituencyfor the House of CommonsBoundary of Kirkcaldy and Cowdenbeath in ScotlandMajor settlementsBurntisland, Cowdenbeath, Dalgety Bay, Kinghorn, Kirkcaldy, LochgellyCurrent constituencyCreated2005Member of ParliamentNeale Hanvey (Alba Party)Created fromKirkcaldy and Dunfermline East Kirkcaldy and Cowdenbeath is a county constituency representing the areas around the towns of Kirkcaldy and Cowd...

Questa voce o sezione sull'argomento chimica non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. Incendio a Helsinki. L'incendio è una reazione ossidativa (o combustione) non controllata che si sviluppa senza limitazioni nello spazio e nel tempo dando luogo, dove si estende, a calore, fumo, gas e luce. Gli i...

 

 

Danny Hoesen Informasi pribadiNama lengkap Daniel HoesenTanggal lahir 15 Januari 1991 (umur 33)Tempat lahir Heerlen, BelandaTinggi 1,86 m (6 ft 1 in)Posisi bermain PenyerangInformasi klubKlub saat ini Austin FCKarier junior SV Eikenderveld Groene Ster Fortuna SittardKarier senior*Tahun Tim Tampil (Gol)2008–2009 Fortuna Sittard 1 (0)2009–2012 Fulham 0 (0)2010 → HJK (pinjaman) 12 (2)2011–2012 → Fortuna Sittard (pinjaman) 33 (13)2012–2014 Ajax 32 (7)2013 → Jong...

 

 

جزء من سلسلة الخدمات الماليةالمصارف أنواع المصارف Advising مركزي مصارف وقفية تجاري Community development تعاوني اتحاد ائتماني أمناء الحفظ Depository بنك افتراضي Export credit agency استثماري Industrial Merchant توفير مشترك National أوف شور Postal savings  [لغات أخرى]‏ Private Public للأفراد المصرف الادخاري جمعية إدخ�...

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: コルク – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2017年4月) コルクを打ち抜いて作った瓶の栓 コルク(木栓、�...

 

 

日語寫法日語原文日本標準時假名にほんひょうじゅんじ平文式罗马字Nihon Hyōjunji此條目可参照日語維基百科相應條目来扩充。若您熟悉来源语言和主题,请协助参考外语维基百科扩充条目。请勿直接提交机械翻译,也不要翻译不可靠、低品质内容。依版权协议,译文需在编辑摘要注明来源,或于讨论页顶部标记{{Translated page}}标签。兵庫縣明石市的明石市立天文科學館(...

 

 

Not to be confused with Water supply and sanitation in Syria. The Barada river, shown here in Damascus in 2009, is the only notable river flowing entirely within Syrian territory Water resources management in Syria is confronted with numerous challenges. First, all of the country's major rivers are shared with neighboring countries, and Syria depends to a large extent on the inflow of water from Turkey through the Euphrates and its tributaries. Second, high population growth and urbanisation ...

博里萨夫·约维奇攝於2009年 南斯拉夫社會主義聯邦共和國第12任總統任期1990年5月15日—1991年5月15日总理安特·马尔科维奇前任亚内兹·德尔诺夫舍克继任塞吉多·巴伊拉莫维奇(英语:Sejdo Bajramović) (代任)第12任不结盟运动秘书长任期1990年5月15日—1991年5月15日前任亚内兹·德尔诺夫舍克继任斯捷潘·梅西奇第3任塞尔维亚常驻南斯拉夫社会主义联邦共和国主席团代表任�...

 

 

Artikel atau sebagian dari artikel ini mungkin diterjemahkan dari Archimedean property di en.wikipedia.org. Isinya masih belum akurat, karena bagian yang diterjemahkan masih perlu diperhalus dan disempurnakan. Jika Anda menguasai bahasa aslinya, harap pertimbangkan untuk menelusuri referensinya dan menyempurnakan terjemahan ini. Anda juga dapat ikut bergotong royong pada ProyekWiki Perbaikan Terjemahan. (Pesan ini dapat dihapus jika terjemahan dirasa sudah cukup tepat. Lihat pula: panduan pen...

 

 

German navy officer, U-boat commander, Admiral in the Kriegsmarine (1895–1945) This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (April 2019) (Learn how and when to remove this message) Hans-Georg von FriedeburgGeneraladmiralCommander of the Marine High CommandIn office1 May 1945 – 23 May 1945Preceded byKarl DönitzSucceeded byWalter Warzecha Person...

Labour organization in Nazi Germany German Labour FrontDeutsche ArbeitsfrontAbbreviationDAFPredecessorNational Socialist Factory Cell OrganizationFormation10 May 1933; 91 years ago (1933-05-10)DissolvedMay 1945; 79 years ago (1945-05)Legal statusIllegalMembership 32 million (1938)[1]Leader of the DAFRobert LeyParent organizationNSDAPSubsidiariesNational Socialist Trade and Industry OrganizationBeauty of LabourStrength through Joy The German Lab...

 

 

В Википедии есть статьи о других людях с такой фамилией, см. Надеждин; Надеждин, Борис. Борис Борисович Надеждин Член Совета депутатов Долгопрудного 25 сентября 2019 — 19 июня 2024февраль 1990 — 1997 Замещающий член Парламентской ассамблеи Совета Европы 3 апреля 2000 — 22 января 2001...

 

 

1892 Coeur d'Alene labor strikeThe Bunker Hill mill (the building emitting smoke in the far distance) was blown up during the 1892 labor strike.DateJuly 1892LocationCoeur d'Alene, Idaho, U.S.GoalswagesMethodsStrikes, Protest, DemonstrationsParties Western Federation of Miners Mine Owners' Association; Pinkertons Lead figures George Pettibone Charlie Siringo Casualties and losses Deaths: 3Injuries: 17Arrests: 600 Deaths: 2Injuries: vteLabor disputes by sector vteAgricultural strikes 1800s Thib...

Minnesota Senate election, 2010 ← 2006 November 2, 2010 (2010-11-02) 2012 → All 67 seats in the Minnesota Senate34 seats needed for a majority   Majority party Minority party   Leader Dave Senjem Larry Pogemiller Party Republican Democratic (DFL) Leader since November 10, 2006 November 9, 2006 Leader's seat 29th–Rochester 59th–Minneapolis Last election 23 seats, 43.28% 44 seats, 55.31% Seats before 21 46 Seats won 37...

 

 

American mechanical engineer and economist Frederick Arthur Halsey (July 12, 1856 – October 20, 1935) was an American mechanical engineer and economist, who was long-time editor of the American Machinist magazine, and particularly known for his 1891 article, entitled The premium plan of paying for labor.[1][2] Biography Halsey was born in Unadilla, New York to the physician Gaius Leonard Halsey, and Juliet Cartington Halsey. He was the younger brother of Francis Whiting Hals...

 

 

United States historic placeF. W. Woolworth Co. Store - RentonU.S. National Register of Historic Places Woolworth Company Store, now Western WearShow map of Washington (state)Show map of the United StatesLocation724 South 3'd Street, Renton, WashingtonCoordinates47°28′47.49″N 122°12′25.21″W / 47.4798583°N 122.2070028°W / 47.4798583; -122.2070028 (Woolworth Company Store)Built1954 (1954)Built byRiley Pleas Inc.Architectural styleInternation...

17th-century Protestant religious community movement Part of the series onModern scholasticism Title page of the Operis de religione (1625) from Francisco Suárez. Background Protestant Reformation Counter-Reformation Aristotelianism Scholasticism Patristics Modern scholastics Second scholasticism of the School of Salamanca Lutheran scholasticism during Lutheran orthodoxy Ramism among the Reformed orthodoxy Metaphysical poets in the Church of England Reactions within Christianity The Jesuits ...

 

 

For the building formerly known as Aaron the Jew's House, see Norman House.This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help improve this article by introducing more precise citations. (November 2021) (Learn how and when to remove this message)Historic site in between Uphill and Downhill, LincolnJew's House, LincolnFrontage of the Jew's House, LincolnLocationAt the junction of Steep Hil...