In der linearen Algebra werden Hyperebenen auch in unendlichdimensionalen Vektorräumen betrachtet und sind dort gerade die affinen Unterräume mit Kodimension eins. Jede Hyperebene entsteht durch Verschiebung eines Untervektorraums um einen festen Vektor. Kann dabei der Nullvektor gewählt werden, spricht man auch von einer linearen Hyperebene, da dann die Hyperebene selbst einen Vektorraum darstellt. Zur besseren Unterscheidung spricht man im Fall eines beliebigen Verschiebungsvektors auch von einer affinen Hyperebene.
wobei ein normierter und orientierter Normalenvektor der Hyperebene ist und den Abstand der Hyperebene vom Koordinatenursprung beschreibt.[2] Die hessesche Normalform erlaubt eine effiziente Berechnung des Abstands eines beliebigen Punkts des Raums von der Hyperebene.
wobei sind und mindestens einer der Koeffizienten ungleich null ist.[3] Die Koordinatenform ergibt sich aus der Normalenform durch Ausmultiplizieren, wobei und gesetzt werden.
einen Halbraum im -dimensionalen euklidischen Raum, der von einer Hyperebene begrenzt wird. Die Lösungsmenge eines linearen Ungleichungssystems ist dann der Schnitt solcher Halbräume und stellt damit ein konvexesPolytop dar, beispielsweise einen Hyperwürfel, ein Hyperrechteck oder einen Simplex (Hypertetraeder). Die lineare Optimierung beschäftigt sich mit Verfahren zur Maximierung einer vorgegebenen linearen Zielfunktion in einem konvexen Polytop.[4]
Eine Hyperebene heißt Stützhyperebene einer gegebenen Menge im euklidischen Raum, wenn sie den Rand der Menge schneidet und die Menge vollständig in einem der beiden durch die Hyperebene definierten abgeschlossenen Halbräume liegt. Ist die Menge konvex, dann existiert für jeden Randpunkt der Menge eine solche Stützhyperebene.[5]
Ist ein Vektorraum über dem Körper , dann ist eine Hyperebene eine Teilmenge der Form
,
wobei ein beliebiger Vektor und ein Untervektorraum von mit Kodimension ist. Hyperebenen sind demnach maximale echte affine Unterräume, das heißt, jeder echte affine Unterraum ist in einer Hyperebene enthalten. Eine Hyperebene wird als lineare Hyperebene bezeichnet, wenn sie den Nullvektor enthält, das heißt, wenn in der Definition gewählt werden kann.
Im Koordinatenraum stellen die Koordinatenvektoren, die eine lineare Gleichung der Form erfüllen, eine Hyperebene dar. Ist , handelt es sich dabei um eine lineare Hyperebene.
Im Matrizenraum stellen die Matrizen, bei denen die Summe aller Einträge konstant ist, eine Hyperebene dar. Ist diese Konstante , handelt es sich dabei um eine lineare Hyperebene.
Im Polynomraum stellen die Polynome der Form , wobei fest vorgegeben ist, eine Hyperebene dar. Im Fall handelt es sich dabei um eine lineare Hyperebene.
Im Funktionenraum stellen die Funktionen mit für ein festes und eine Hyperebene dar. Im Fall handelt es sich dabei um eine lineare Hyperebene.
Durch Setzen von ergibt sich daraus dann die äquivalente Darstellung[6]
.
Hierbei sind und für eine gegebene Hyperebene nur bis auf einen gemeinsamen Faktor eindeutig bestimmt. Umgekehrt stellt das Urbild für jedes lineare Funktional , das ungleich dem Nullfunktional ist, und für jeden Skalar eine Hyperebene dar.[6]
In der Funktionalanalysis betrachtet man unendlichdimensionale Vektorräume über oder , auf denen eine Topologie erklärt ist, die sie zu topologischen Vektorräumen macht. Hier interessiert man sich besonders für Hyperebenen, die durch stetige lineare Funktionale definiert sind. Da ein lineares Funktional genau dann stetig ist, wenn sein Kern abgeschlossen ist,[7] definieren die stetigen linearen Funktionale ungleich dem Nullfunktional genau die abgeschlossenen Hyperebenen. Für normierte Räume, allgemeiner lokalkonvexe Räume, gibt es nach dem Satz von Hahn-Banach sehr viele solcher stetigen linearen Funktionale und damit auch abgeschlossene Hyperebenen der Form
mit . Diese Reichhaltigkeit schlägt sich im Trennungssatz nieder, nach dem zwei disjunkte konvexe, kompakte Mengen durch eine solche abgeschlossene Hyperebene getrennt werden können.
Ist der projektive Raum zu dem Vektorraum , dann ist eine (projektive) Hyperebene eine Teilmenge der Form
,
wobei ein Untervektorraum von der Kodimension eins ist und die Äquivalenzrelation skalare Vielfache von Vektoren ungleich dem Nullvektor miteinander identifiziert. Die Hyperebenen in sind demnach gerade die projektiven Unterräume der Kodimension eins. Eine projektive Hyperebene stellt selbst wieder einen projektiven Raum dar, nämlich gerade den Raum . Ist -dimensional, dann ist -dimensional und -dimensional.
Beispiele
Ist der zugrunde liegende Vektorraum der euklidische Raum , dann gibt es folgende Entsprechungen:
Eine Hyperebene (eine Ebene) im projektiven Raum entspricht einer Ursprungshyperebene im euklidischen Raum .
Koordinatendarstellung
Sind die homogenen Koordinaten eines Punkts im -dimensionalen projektiven Standardraum , dann hat eine projektive Hyperebene die Koordinatendarstellung
,
wobei sind und mindestens einer der Koeffizienten ungleich null ist.
Eine nichtdesarguessche projektive Ebene lässt sich jedoch nicht auf diese Weise koordinatisieren. Dort sind die Hyperebenen per Definition die Geraden.
Bezug zu affinen Räumen
Ist eine Hyperebene in einem projektiven Raum , dann stellt die Menge
einen affinen Raum dar, wobei eine entsprechende Einbettung von in ist. Der Translationsraum von ist dabei gerade der zu zugehörige Untervektorraum . Die Punkte von heißen dann eigentlich, die Punkte von uneigentlich oder Fernpunkte. Umgekehrt lässt sich jeder affine Raum durch disjunkte Vereinigung mit einer Fernhyperebene gleicher Dimension zu einem projektiven Raum
erweitern. Ist beispielsweise und , dann ist die zugehörige Einbettung mit der Inversen .
In der endlichen Geometrie haben unter den endlichen affinen oder projektiven Geometrien diejenigen besondere Eigenschaften, bei denen – neben den gewöhnlichen Punkten als Punktmenge – speziell die Hyperebenen des Raumes als Blockmenge gewählt werden.
Siehe auch
Hyperfläche, eine Verallgemeinerung von Hyperebenen auf gekrümmte Mannigfaltigkeiten
Harro Heuser: Funktionalanalysis. Theorie und Anwendung. 3. Auflage. Teubner, Wiesbaden 1992, ISBN 3-519-22206-X.
Lineare Algebra und analytische Geometrie
Hermann Schaal: Lineare Algebra und analytische Geometrie, Band I und II. 2. durchgesehene Auflage. Vieweg, Braunschweig 1980, ISBN 3-528-13057-1.
Günter Scheja, Uwe Storch: Lehrbuch der Algebra: unter Einschluß der linearen Algebra. 2., überarb. und erw. Auflage. Teubner, Stuttgart 1994, ISBN 3-519-12203-0.
Uwe Storch, Hartmut Wiebe: Lehrbuch der Mathematik für Mathematiker, Informatiker und Physiker. Band II: Lineare Algebra. BI-Wissenschafts-Verlag, 1990, ISBN 3-411-14101-8.
Anwendungen in der Geometrie (Seiteneinteilung)
Wendelin Degen und Lothar Profke: Grundlagen der affinen und euklidischen Geometrie. Teubner, Stuttgart 1976, ISBN 3-519-02751-8.
Emanuel Sperner: Die Ordnungsfunktionen einer Geometrie. In: Math. Ann. Band121. Teubner, 1949, S.107–130.
↑Klemens Burg, Herbert Haf, Friedrich Wille, Andreas Meister: Höhere Mathematik für Ingenieure Band II: Lineare Algebra. Springer, 2012, ISBN 978-3-8348-2267-3, S.81.