Ellipsometrie bestimmt die Änderung des Polarisationszustands von Licht bei Reflexion (oder Transmission) an einer Probe. In der Regel wird linear oder zirkular polarisiertes Licht verwendet. Wie aus den Fresnel-Gleichungen hervorgeht, wird dieses Licht bei der gerichteten Reflexion an einer Grenzfläche im Allgemeinen elliptisch polarisiert, woraus sich auch der Name Ellipsometrie ableitet.
Die Änderung des Polarisationszustands kann im einfachsten Fall durch das komplexe Verhältnis der Reflexionskoeffizienten und beschrieben werden. Hierbei steht für senkrecht zur Einfallsebene und für parallel zur Einfallsebene polarisiertes Licht. Diese Koeffizienten sind das Verhältnis zwischen einfallender und reflektierter Amplitude.
Eine andere Darstellung verwendet die ellipsometrischen Parameter und , wobei gleich dem Betrag von ist, und der Änderung der Phasendifferenz zwischen s- und p-polarisierter Welle entspricht:[3]
.
Aus der obigen Gleichung lassen sich folgende Vorteile der Ellipsometrie gegenüber reinen Reflexionsmessungen ableiten, bei denen nur der ReflexionsgradR gemessen wird:
Keine Referenzmessung notwendig, da Intensitätsverhältnisse anstatt Intensitäten bestimmt werden.
Aus demselben Grund ergibt sich eine geringere Anfälligkeit gegenüber Intensitätsschwankungen.
Es werden immer (mindestens) zwei Parameter ( und ) in einem Experiment bestimmt.
Aufbauvarianten und Einteilung
In diesem Artikel oder Abschnitt fehlen noch folgende wichtige Informationen:
Es fehlen Informationen zum grundlegenden Aufbau eine Ellipsometers (am besten am Beispiel des Null-Ellipsometers; Lichtquelle, Polarisierer usw. + Grafik). Daran anschließend sollten die Aufbauvarianten kurz erklärt werden (Null-Ellipsometer, rotierender Analysator, rotierender Polarisator usw.). Hier wären Erklärungen zu den Vor- und Nachteile nützlich.--Cepheiden 15:19, 13. Feb. 2007 (CET)
Im ultravioletten Strahlungsbereich lassen sich neben den im sichtbaren Licht zu beobachtenden Parametern auch höherenergetische Band-Band-Übergänge bestimmen.
Einwellenlängen- und spektroskopische Ellipsometrie
Bei der Einwellenlängenellipsometrie wird mit einer festen Wellenlänge gearbeitet, die im Allgemeinen durch die Verwendung von Lasern vorgegeben ist. Oft kann bei diesen Systemen der Winkel variiert werden.
Im Gegensatz dazu werden bei der spektroskopischen Ellipsometrie die Parameter und für einen bestimmten Spektralbereich in Abhängigkeit von der Wellenlänge (Photonenenergie) bestimmt.
Standardellipsometrie und verallgemeinerte Ellipsometrie
Die Standardellipsometrie, häufig auch kurz Ellipsometrie genannt, wird dann verwendet, wenn weder -polarisiertes in -polarisiertes Licht noch umgekehrt umgewandelt wird. Das ist der Fall, wenn die untersuchten Proben optisch isotrop sind oder optisch einachsig sind, wobei die optische Achse dann senkrecht zur Oberfläche orientiert sein muss. In allen anderen Fällen muss die verallgemeinerte Ellipsometrie verwendet werden.
Matrix-Ellipsometrie
Jones-Matrix-Ellipsometrie wird verwendet, wenn die untersuchten Proben nicht depolarisierend sind. Der Polarisationszustand des Lichtes wird hierbei durch den Jones-Vektor und die Änderung des Polarisationszustands durch die Jones-Matrix (2×2-Matrix mit 4 komplexen Elementen) beschrieben.
Sind die Proben depolarisierend, z. B. durch Schichtinhomogenitäten oder Rauigkeiten, muss Müller-Matrix-Ellipsometrie[4] verwendet werden. Der Polarisationszustand des Lichts wird hierbei durch den Stokes-Vektor und die Änderung des Polarisationszustands durch die Müller-Matrix (4×4-Matrix mit 16 reellwertigen Elementen) beschrieben. Aufgrund der immer anspruchsvolleren Anwendungen gewinnt die Müller-Matrix-Ellipsometrie zunehmend an Bedeutung.
Ellipsometrische Porosimetrie
Bei der ellipsometrischen Porosimetrie (EP) werden Messungen während der Adsorption und Desorption einer gasförmigen Komponente, meist Wasserdampf, durchgeführt. Dadurch wird eine Bestimmung der offenen Porosität dünner Schichten möglich.[5]
Auswertung der experimentellen Daten
Zur Auswertung der experimentellen Daten wird im Allgemeinen eine Modellanalyse verwendet. Nur im Spezialfall einer Probe, die nur aus einer Schicht besteht und optisch unendlich dick ist, können aus den experimentellen Daten direkt die optischen Konstanten der Probe bestimmt werden. Für die meisten Proben sind diese Bedingungen nicht erfüllt, so dass die experimentellen Daten durch eine Linienformanalyse ausgewertet werden müssen. Dazu wird ein Modell erstellt, das die Abfolge der einzelnen Schichten der Probe, deren optische Konstanten und Schichtdicken enthält. Die optischen Konstanten sind entweder bekannt oder werden durch eine parametrisierte Funktion (engl. model dielectric function) beschrieben. Durch Variation der Parameter werden die Modellkurven den experimentellen Kurven angepasst.
R. M. A. Azzam, N. M. Bashara: Ellipsometry and Polarized Light. Elsevier Science Pub Co., 1987, ISBN 0-444-87016-4.
A. Röseler: Infrared Spectroscopic Ellipsometry. Akademie-Verlag, Berlin 1990, ISBN 3-05-500623-2.
M. Schubert: Infrared Ellipsometry on semiconductor layer structures: Phonons, Plasmons, and Polaritons (= Springer Tracts in Modern Physics. 209). Springer, Berlin 2004, ISBN 3-540-23249-4.
H. G. Tompkins: A User's Guide to Ellipsometry. 3. Auflage. Dover Publications Inc., Mineola, N.Y. 2013, ISBN 978-0-486-15192-2 (google.de). (Gutes Einsteigerbuch).
↑Ellipsometrie. Lexikon der Physik, 1998, abgerufen am 3. Juni 2024.
↑H. G. Tompkins (Hrsg.), E. A. Irene (Hrsg.): Handbook of Ellipsometry. William Andrews Publications, Norwich, NY 2005, ISBN 0-8155-1499-9, S. 77.
↑ Tim Käseberg, Jana Grundmann, Thomas Siefke, Stefanie Kroker und Bernd Bodermann: Abbildende Müller-Matrix-Ellipsometrie für die Charakterisierung vereinzelter Nanostrukturen. In: Technisches Messen. März 2022, S.439–446 (researchgate.net).
↑Peer Löbmann: Characterization of sol–gel thin films by ellipsometric porosimetry. In: Journal of Sol-Gel Science and Technology. Band84, Nr.1, 1. Oktober 2017, S.2–15, doi:10.1007/s10971-017-4473-1.