β-Butyrolakton je organická sloučenina, lakton odvozený od kyseliny beta-hydroxymáselné. Při jeho výrobě vzniká racemická směs. Používá se jako monomer biologicky rozložitelného plastu poly(3-hydroxybutyrát)u (PHB). Polymerizací racemického (RS)-β-butyrolaktonu vzniká polymer kyseliny (RS)-hydroxymáselné, který má ovšem horší vlastnosti (například odolnost vůči rozpadu) než přírodní (R)-poly-3-hydroxybutyrát.[2]
Hydrogenacídiketenu za přítomnosti kontaktního palladiového katalyzátoru vzniká β-butyrolakton při výtěžnosti 93 %.[5]
Asymetrickou hydrogenací diketenu pomocí ruthenium-BINAPového katalyzátoru se tvoří opticky aktivní (R)-β-butyrolakton s účinností 97 % a 92% enantiomerním přebytkem.[6]
Při teplotě 50 °C a tlaku CO okolo 6 MPa se (R)-2-methyloxiran karbonyluje na (R)-β-butyrolakton, přičemž konfigurace zůstává zachována z 95 %,[7] je-li jako katalyzátor použit [(salph)Al(THF)2][Co(CO)4][8] (který lze připravit z komplexu [(salph)AlCl a tetrakobaltnanu sodného Na[Co(CO)4]).
Karbonylací 2-methyloxiranu za přítomnosti homogenních porfyrin-karbonylkobaltnanových katalyzátorů v tetrahydrofuranu při tlakuoxidu uhelnatého 1,4 MPa se tvoří β-butyrolakton s výtěžností 97 %.[9]
Kvůli obtížím při oddělování a recyklaci homogenních katalyzátorů byly zkoumány také jejich heterogenní polymerní analogy, při jejich použití se dosahuje podobné výtěžnosti (až 96 %) za tlaku CO 6 MPa. Tyto katalyzátory ovšem nejsou vhodné pro průmyslové využití, protože mají mnohem nižší katalytickou aktivitu.[10]
(R)-β-Butyrolakton reaguje v toluenu s oxidem uhelnatým o tlaku 1,4 MPa a teplotě 55 °C za přítomnosti salenového komplexu po 24 h za vzniku opticky čistého (enantiomerní přebytek nad 99 %) (S)-methylsukcinanhydridu s výtěžností 94 %.[12]
Homo- a kopolymery získávané z β-butyrolaktonu
Výroba kyseliny polyhydroxymáselné (PHB) a homo- a kopolymerních polyhydroxyalkanoátových aerobně biologicky rozložitelných termoplastů zahájená v roce 1983 odstartovala hledání syntetických materiálů, u kterých by se neprojevovaly nedostatky PHB, jako jsou křehkost a tuhost, rozklad již mírně nad teplotami tání (175 až 180 °C) a příliš vysoké náklady[13] v důsledku fermentace, izolace a přečišťování.
Polymerizací s otevíráním kruhu (S)-β-butyrolaktonu pomocí diethylzinku (ZnEt2) se tvoří poly-(S)-3-hydroxybutyrát s enantiomerním přebytkem nad 97 % při zachování konfigurace na chirálním uhlíku:[14]
Pomocí katalyzátorů ze sloučenin cínu nazývaných distannoxany lze polymerizací (R)-β-butyrolaktonu získat syntetické (R)-polyhydroxybutyráty (Mn > 100 000) se zachováním konfigurace, podobné přírodním polyhydroxyalkanoátům.[15]Aniontovou polymerizací opticky aktivního β-butyrolaktonu vznikají krystalické izotaktické polyhydroxybutyráty s obrácenou konfigurací, které mají nízkou nízká polydisperzitu ( Mw/Mn ≈ 1,2).[16][17]
Silnými zásadami, jako jsou diazabicykloundecen (DBU), 1,5,7-triazabicyklo(4.4.0)dec-5-en (TBD) a fosfazen BEMP, je možné katalyzovat polymerizaci β-butyrolaktonu s otevíráním kruhu při 60 °C za vzniků PHB s nízkými molekulovými hmotnostmi (Mn < 21 000) a jejich užším rozdělením.[18]
Kationtová polymerizace β-butyrolaktonu silnými kyselinami, například kyselinou trifluormethansulfonovou, vede ke vzniku produktů s nižšími molekulovými hmotnostmi (Mn < 8 200) s hydroxylovými skupinami na koncích řetězců, které umožňují kopolymerizaci například s kaprolaktonem.[19]
Pomocí yttriových katalyzátorů je možné přeměnit racemický β-butyrolakton na (převážně) syndiotaktický PHB s úzkým rozdělením molekulových hmotností.[20][21]
N-heterocyklické karbeny odvozené od imidazol-2-ylidenu jsou silné nukleofily a také vhodné jako iniciátory polymerizace laktonů, jako je β-butyrolakton.[22]
Syntetické PHB, které byly vyvinuté jako homopolymery β-butyrolaktonu nebo jeho kopolymery s ostatními laktony, nemají tak dobré vlastnosti jako biogenní varianty, obzvláště co se týče mechanických a tepelných vlastností a nákladnosti; místo toho se u nich objevují potíže s toxicitou kovů (například cínu, kobaltu či chromu) obsažených v katalyzátorech a atakticitou produktů , které jsou kapalné a obtížně se oddělují.
↑H. Abe; I. Matsubara; Y. Doi. Physical properties and enzymatic degradability of poly(3-hydroxybutyrate) stereoisomers with different stereoregularities. Macromolecules. 1994, s. 6018–6025. DOI10.1021/ma00099a013.
↑US2580714A Production of beta-hydroxy carboxylic acid lactones from ketene and aldehyde with clay catalyst [online]. 1952-01-01 [cit. 2024-09-24]. Dostupné online.
↑T. Ohta; T. Miyake; H. Takaya. An efficient synthesis of optically active 4-methyloxetan-2-one: asymmetric hydrogenation of diketene catalysed by binap–ruthenium(II) complexes [binap = 2,2′-bis(diphenylphosphino)-1,1′-binaphthyl]. ChemComm. 1992, s. 1725–1726. DOI10.1039/C39920001725.
↑Y. D. Y. L. Getzler; V. Mahadevan; E. B. Lobkovsky. Synthesis of β-lactones: a highly active and selective catalyst for epoxide carbonylation. Journal of the American Chemical Society. 2002, s. 1174–1175. DOI10.1021/ja017434u. PMID11841278.
↑US2012123137A1 PROCESS FOR BETA-LACTONE PRODUCTION [online]. 2012-05-17 [cit. 2024-09-24]. Dostupné online.
↑J. Jiang; S. Yoon. A metalated porous porphyrin polymer with [Co(CO)4]− anion as an efficient heterogeneous catalyst for ring expanding carbonylation. Scientific Reports. 2018. DOI10.1038/s41598-018-31475-6. PMID30185794.
↑M. C. Bagley; Z. Lin; D. J. Phillips; A. E. Graham. Barium manganate in microwave-assisted oxidation reactions: synthesis of lactones by oxidative cyclization reactions. Tetrahedron Letters. 2009, s. 6823–6825. DOI10.1016/j.tetlet.2009.09.117.
↑Y. D. Y. L. Getzler; V. Kundnani; E. B. Lobkovsky; G. W. Coates. Catalytic carbonylation of β-lactones to succinic anhydrides. ournal of the American Chemical Society. 2004, s. 6842–6843. DOI10.1021/ja048946m. PMID15174834.
↑Y. Zhang; R. A. Gross. Stereochemistry of the ring-opening polymerization of (S)-β-butyrolactone. Macromolecules. 1990, s. 3206–3212. DOI10.1021/ma00215a002.
↑Y. Hori; M. Suzuki; A. Yamaguchi; T. Nishishita. Ring-opening polymerization of optically active β-butyrolactone using distannoxane catalysts: Synthesis of high molecular weight poly(3-hydroxybutyrate). Macromolecules. 1993, s. 5533–5534. DOI10.1021/ma00072a037.
↑Z. Jedlinski. First facile synthesis of biomimetic poly (R)-3-hydroxybutyrate via regioselective anionic polymerization of (S)-β-butyrolactone. Macromolecules. 1998, s. 6718–6720. DOI10.1021/ma980663p.
↑R. Kurcak; M. Smiga; Z. Jedlinski. β-Butyrolactone polymerization initiated with tetrabutylammonium carboxylates: a novel approach to biomimetic polyester synthesis. Journal of Polymer Science. 2002, s. 2184–2189. DOI10.1021/ma980663p.
↑C. G. Jaffredo; J.-F. Carpentier; S. M. Guillaume. Controlled ROP of β-butyrolactone simply mediated by amidine, guanidine, and phophazene organocatalysts. Macromol. Rapid Comun.. 2012, s. 1938–1944. DOI10.1002/marc.201200410. PMID22887774.
↑A. Couffin; B. Martin-Vaca; D. Bourissou; C. Navarro. Selective O-acyl ring-opening of β-butyrolactone catalyzed by trifluoromethane sulfonic acid: application to the preparation of well-defined block copolymers. Polymer Chemistry. 2014, s. 161–168. DOI10.1039/C3PY00935A.
↑J.-F. Carpentier. Discrete metal catalysts for stereoselective ring-opening polymerization of chiral racemic β-lactones. Macromol. Rapid Commun.. 2010, s. 1696–1705. DOI10.1002/marc.201000114. PMID21567583.
↑W. N. Ottou; H. Sardon; D. Mecerryes; J. Vignolle; D. Taton. Update and challenges in organo-mediated polymerization reactions. Progress in Polymer Science. 2016, s. 64–115. Dostupné online. DOI10.1016/j.progpolymsci.2015.12.001.
Externí odkazy
Obrázky, zvuky či videa k tématu β-butyrolakton na Wikimedia Commons