Přechodový jev je fyzikální děj probíhající v čase mezi dvěma ustálenými stavy. V ustáleném stavu se energie soustavy nemění (popř. se mění periodicky), během přechodového děje dochází k jejím změnám.
Vznik jevu je podmíněn změnami energie v akumulačních prvcích obvodu (kondenzátory a cívky). Tyto změny nemohou proběhnout okamžitě, protože by vyžadovaly zdroj nekonečné energie. Charakter jevu závisí na druhu zapojených akumulačních prvků. Obsahuje-li obvod pouze jeden akumulační prvek obvodu (tj. kromě rezistoru pouze kondenzátor nebo pouze cívku), nemůže dojít k vratné výměně energie a děj probíhá aperiodicky. Pokud však obvod obsahuje oba akumulační prvky, dochází k periodické výměně energie mezi prvky - rezonance. Tyto obvody pak nazýváme oscilátory.
Přechodové jevy prvního řádu
RL obvod
RL obvod je tvořen zdrojem stejnosměrnéhoelektrického napětí a sériovým zapojením ideálního rezistoru a ideální cívky. Po připojení ke zdroji začne obvodem procházet elektrický proud, který na cívce vytvoří magnetické pole, které se bude zvětšovat a na cívce se začne indukovat napětí. Napětí na cívce je zpočátku stejně velké jako napětí zdroje, zatímco napětí na rezistoru je rovno nule. Postupně se však bude napětí na cívce snižovat a na rezistoru zvyšovat až bude obvodem protékat ustálený proud jako řešení rovnice (2.Kirchhoffův zákon):
tj. tj. tj.
a po odpojení zdroje napětí se začne energie magnetického pole cívky měnit v rezistoru na energii tepelnou:
kde a představuje úhlovou frekvenci střídavé třífázové sítě ( viz výše). Uvedené řešení diferenciální rovnice je východiskem výpočtů zkratových poměrů v třífázových elektrizačních soustavách, viz norma ČSN EN 60909-0 ED.2 (333022).
RC obvod
RC obvod je tvořen zdrojem stejnosměrnéhoelektrického napětí a sériovým zapojením ideálního rezistoru a ideálního kondenzátoru. Po připojení ke zdroji začne obvodem procházet elektrický proud, který na kondenzátoru vytvoří elektrické pole, které se bude zvětšovat a kondenzátor se začne nabíjet (bude v něm vzrůstat nahromaděný náboj). Napětí na rezistoru je zpočátku stejně velké jako napětí zdroje, zatímco napětí na kondenzátoru je rovno nule. Postupně se však bude napětí na rezistoru snižovat a na kondenzátoru zvyšovat až bude obvodem protékat ustálený proud jako řešení rovnice (2.Kirchhoffův zákon):
.
Tuto rovnici je nutné derivovat podle času t, dostáváme rovnici prvního řádu:
tj. tj. tj.
a po odpojení zdroje napětí se začne energie elektrického pole kondenzátoru měnit v rezistoru na energii tepelnou:
tj. tj. tj. ,
kde časová konstanta je , tj. za čas se kondenzátor nabije zhruba na dvě třetiny své kapacity a za čas se kondenzátor nabije na 95% své kapacity, kondenzátor pak lze považovat za nabitý. Vybíjení kondenzátoru probíhá reverzně k nabíjení.