Pravděpodobnostní funkce se liší od hustoty pravděpodobnosti (anglickyprobability density function, pdf) tím, že se týká diskrétní místo spojité náhodné veličiny jako je tomu u hustoty pravděpodobnosti; hodnoty hustoty pravděpodobnosti nejsou pravděpodobnosti jako takové: hustotu pravděpodobnosti je nutné zintegrovat, abychom získali pravděpodobnost.[2]
Abychom se vyhnuli chybám, můžeme uvažovat o pravděpodobnosti jako o hmotě, protože fyzická hmota je zachována stejně jako celková pravděpodobnost pro všechny hypotetické výsledky x:
Když existuje přirozené pořadí mezi hypotézami x, může být pohodlné jim přiřadit numerické hodnoty (nebo n-ticím v případě diskrétní vícerozměrné náhodné veličiny) a uvažovat také hodnoty, které nejsou v obrazu množiny X. To znamená, že funkce fX může být definovaná pro všechna reálná čísla a fX(x) = 0 pro všechna xX(Ω), jak je znázorněno na obrázku.
Protože obraz X je spočetný, pravděpodobnostní funkce fX(x) je nulová pro všechny hodnoty s výjimkou spočetného počtu hodnot x. Nespojitost pravděpodobnostní funkce plyne z faktu, že distribuční funkce diskrétní náhodné veličiny je také nespojitá. Pokud je derivovatelná, její derivace je nula, stejně jako pravděpodobnostní funkce je nulová ve všech takových bodech.
Příklady
Předpokládejme, že Ω je prostor elementárních jevů všech výsledků jediného hodu mincí a X je náhodná veličina definovaná na Ω přiřazením 0 „orlu“ a 1 „hlavě“; jedná se o alternativní rozdělení, které je speciálním případem binomického rozdělení pro počet hodů n=1. Pokud je mince poctivá, pravděpodobnostní funkce je
Příkladem vícerozměrného diskrétního rozdělení a jeho pravděpodobnostní funkce je multinomické rozdělení.
↑Stewart, William J. Probability, Markov Chains, Queues and Simulation: The Mathematical Basis of Performance Modeling. [s.l.]: Princeton University Press, 2011. Dostupné online. ISBN978-1-4008-3281-1.