Existuje mnoho metod, které se liší jak svojí náročností, tak i požadavky na laboratorní vybavení.
Srážecí analýza
Zakládá se na preferovaném průběhu reakcí ke vzniku sraženiny, pokud to je možné (sraženina se skoro nemůže účastnit reakce, proto je rovnováha posunuta silně na její stranu). Je velmi jednoduchá, jen vyžaduje mít po ruce více vzorků zkušebních látek.
Pomocí přidávání vhodných aniontů při testu na kationt a kationtů při testu na aniont a podle tabulky srážecích reakcí je možné několika málo testy ve zkumavce jednoznačně určit přítomnost dané látky. Pokud se jedná o směs, je to pochopitelně složitější, nicméně možné. Pokud by se při reakci mohlo vylučovat více sraženin, bude preferována ta, která má nižší součin rozpustnosti.
Dalším typem reakcí, při kterém je rovnováha posunuta k jejich vzniku, jsou reakce komplexotvorné nebo uvolňující plyn. Komplexy mohou být i rozpustné: proto lze na složení látek soudit i z případné změny barvy roztoku.
Sulfanová zkouška podle skupin kationtů
Kationty se dělí do 5 skupin (tříd) podle svých charakteristických vlastností, (jakým je např. skupinové činidlo, se kterým vytvářejí sraženiny určitých barev) díky nimž se dají i poměrně snadno dokazovat ve směsi.
Podrobnější informace naleznete v článku Chromatografie.
Chromatografie (z řečtiny χρώμα – barva, γραφειν – psát) je souhrnné označení pro skupinu fyzikálně-chemických separačních metod. Molekuly analytu se u všech typů chromatografických separací rozdělují mezi stacionární a mobilní fázi. Dělení je založeno na rozdílné distribuci složek směsi mezi mobilní a stacionární fázi.
Spektroskopické metody se zakládají na různé pohltivosti (absorpci) látek nebo na jejich schopnosti vyzařovat (emitovat) světlo pro různé vlnové délky.
Atomová absorpční spektroskopie (AAS) měří absorpci elektromagnetického záření při vlnové délce 190–850 nm volnými atomy. Tvoří-li absorpční prostředí volné atomy – vznikne atomové spektrum – absorpční čára. Platnost Bouguerova–Lambertova–Beerova zákona pro kvantitativní stanovení.
Atomová emisní spektroskopie (AES) je založena zkoumání spektra záření, které vydává vzorek zahřátý na vysokou teplotu. Kvalitativní složení vzorku se určuje podle polohy čar v emisním spektru (vlnových délek, které vzorek vysílá). Kvantitativní obsah jednotlivých složek vzorku ovlivňuje intenzitu čar.[1][2]
Hmotnostní spektrometrie rozděluje látky na základě toho, jak se jejich ionty chovají v elektrickém a magnetickém poli (síla na jednotkový náboj je konstantní, ale zrychlení je nepřímo úměrné hmotnosti, umožňuje proto i přesnou separaci izotopů, je ale velmi energeticky náročná).
Spektroskopie nukleární magnetické resonance neboli NMR spektroskopie (zkratka NMR pochází z angl. Nuclear magnetic resonance (spectroscopy)) je fyzikálně-chemická metoda využívající interakce atomových jader (s nenulovým jaderným spinem, např. 1H, 13C) s magnetickým polem. Zkoumá rozdělení energií jaderného spinu v magnetickém poli a přechody mezi jednotlivými spinovými stavy vyvolané působením radiofrekvenčního záření. Interpretací NMR spekter lze zjistit strukturu molekul ve vzorku, metoda je využívána i při analýze biomolekul.