Mersennovo prvočíslo je takové prvočíslo, které je o jedna menší než celočíselná mocnina dvojky, tzn. je tvaru
- .
Obecněji všechna čísla v takovém tvaru, bez ohledu na jejich prvočíselnost, se označují jako Mersennova čísla.
Příkladem Mersennova prvočísla je 7 = 23 − 1. Naproti tomu například Mersennovo číslo 24 − 1 = 15 není prvočíslem (je to složené číslo, 15 = 3 · 5).
Vlastnosti
Lze snadno ukázat, že pokud má být číslo 2n − 1 prvočíslem, musí být prvočíslem i exponent n:
- ,
opak ovšem neplatí: číslo 2p − 1 může být složené i pro prvočíselný exponent p (např. 211 − 1 = 23 · 89).
Mersennova prvočísla mají těsný vztah s dokonalými čísly (čísla, která jsou rovná součtu svých vlastních dělitelů), tento fakt byl také prvotním důvodem pro studium tohoto druhu prvočísel. Už ve 4. století př. n. l. Eukleidés dokázal, že pokud M je Mersennovo prvočíslo, pak M(M+1)/2 je dokonalé číslo. V 18. století pak dokázal Euler, že takovou formu mají všechna sudá dokonalá čísla. (Nejsou známa žádná lichá dokonalá čísla a předpokládá se, že žádná neexistují.)
V současné době není známo, zda je Mersennových prvočísel nekonečně mnoho.
je sumou kombinačních čísel: .
Historie
Tato čísla jsou pojmenována po francouzském matematikovi Marinu Mersennovi (1588–1648), který sestavil seznam takových prvočísel s exponenty do 257; jeho seznam však obsahoval chyby: nesprávně zahrnoval M67 a M257 a naopak v něm chyběly M61, M89, M107. Mnoho prvočísel v tomto tvaru je však známo už výrazně déle (viz níže).
Způsoby hledání
Pro hledání Mersennových prvočísel existují specializované velice rychlé metody (oproti obecným metodám pro hledání či testování libovolných prvočísel), což je důvod, proč největší známá prvočísla jsou právě Mersennovými prvočísly.
V současné době nejrychlejší metoda testování prvočíselnosti Mersennových čísel spočívá ve výpočtu rekurentní posloupnosti, vyvinutá v roce 1878 Edouardem Lucasem a vylepšená Lehmerem ve 30. letech 20. století, známá jako Lucasův-Lehmerův test. Tento test je založen na faktu, že Mersennovo číslo je prvočíslem tehdy a jen tehdy, pokud dělí číslo , kde (a ).
Převratem ve vyhledávání Mersennových prvočísel byl příchod počítačů. První počítačem nalezené Mersennovo prvočíslo, M521, bylo nalezeno v 22:00 30. ledna 1952 na počítači na UCLA, pod Lehmerovým vedením, pomocí programu sestaveného profesorem Robinsonem. Od nalezení předchozího Mersennova prvočísla tehdy uběhlo už 38 let, následující prvočíslo (M607) pak bylo nalezeno za necelé dvě hodiny, v dalších měsících pak stejný program nalezl tři další.
V roce 1996 vznikl na Internetu projekt GIMPS pro distribuované vyhledávání Mersennových prvočísel. Tento projekt dosud (říjen 2024) objevil osmnáct největších známých Mersennových prvočísel (tzn. i největší dnes známé prvočíslo).
Známá Mersennova prvočísla
Následující tabulka obsahuje všechna známá Mersennova prvočísla (sekvence A000668 v OEIS):
* Říjen 2024: Dosud není známo, zda mezi 48. a 52. čísly existují některá dosud neobjevená Mersennova prvočísla, číslování je zde proto pouze dočasné.
Odkazy
Reference
Související články
Externí odkazy