eustatická hladina moře (eustatic sea level, ESL) - vzdálenost od středu Země k hladině moře (nedá se měřit přímo a nemůže být brána jako fyzická hladina, ale jen jako indikátor klimatu)[1]
relativní hladina moře (relative sea level, RSL) - relativní výška hladiny moře vůči pevnině (je ovlivňována i změnami výšky pevniny jako například postglaciální vzestup)
Za posledních 2000 let vzrostla na pobřeží USA relativní hladina moře o více než 2 metry, kdežto eustatická hladina moře se nezměnila o ±0,2 metru.[2]
Dále existuje výška povrchu oceánu/moře (sea surface height, SSH), která je definována referenčnímu elipsoidu.[3] a jejími anomáliemi (změnami).
Střední hladina moře (anglickyMean sea level, zrkratka MSL) je průměrná úroveň hladiny moře během všech slapových a sezónních kolísání.[5] Průměrná globální hladina moře během roku kolísá zhruba o 10 mm.[6] Okamžitá hodnota hladiny kolísá vlivem slapů na volném moři o necelý metr. V topografii se střední hodnota užívá jako výchozí pro určování nadmořských výšek bodů v terénu. Tato plocha kopíruje (ovšem ne zcela přesně) plochu tzv. geoidu. Ten je na rozdíl od hladiny moře definován i na pevnině. Výška hladiny se určuje jako průměr získaný dlouhodobým měřením mareografem.
Nula mořského vodočtu je nulový bod stupnice vodočtu, na níž se dlouholetým pozorováním určuje střední hladina moře a její změny.[7] Nula stupnice mořského vodočtu v Kronštadtu je základem geodetického referenčního systému na území České republiky – Výškový systém baltský – po vyrovnání (Bpv).
Vývoj
Celosvětové pohyby hladiny moře jsou nazývány eustáze. Eustatické pohyby souvisí s utvářením a táním ledovců (glacieustatické pohyby). Za sterické se označují změny způsobené teplotní roztažností vody (termosterické) či změnou salinity (halosterické). Roztažnost byla na přelomu tisíciletí hlavním příspěvkem k nárůstu hladiny (ale nikoli v druhé polovině 20. století).[8] Za izostatické se označují ty, které jsou způsobeny výzdvihem oceánského dna, vznikem mořských příkopů nebo pohyby kontinentů. Při kladných eustatických pohybech dochází k transgresi, při záporných eustatických pohybech dochází k regresi. Existuje i vztah k atmosférickému tlaku.[9]
Na počátku archaika (prahor) bylo v zemské kůře, díky její vyšší teplotě (1900–3000 K), vázáno výrazně méně vody. Z tohoto důvodu vědci předpokládají, že rozsah světového oceánu byl výrazně větší, což mělo také vliv na složení atmosféry Země v té době a na tehdejší klima.[10] Odhaduje se, že hladina moře byla před několika miliardami let o 1 až 2 km výše než je dnes.[11] V minulosti mohla hladina moře stoupat i několik metrů za století.[12] A před 100 milióny let (viz také křídové moře) přibližně o 200 metrů výše.[13] Ještě v miocénu bylo moře Paratethys na Moravě. Ledovec sice před 60 miliony let mělo Transantarktické pohoří, ale masivní zalednění Antarktidy není tak staré. Vliv na hladinu moře mohla mít i tektonika, jejíž rychlost měnila množství vody[14] (i dnes funguje koloběh vody do zemského pláště). Na konci poslední doby ledové před zhruba 14 tisíci lety hladina stoupala rychlostí zhruba 4 metry za století,[15] což je řádově rychleji než je nárůst hladiny za poslední století.
Od roku 1993 (počátku satelitních měření) do roku 2010 činil průměrný nárůst hladiny oceánů 2,6–2,9 ± 0,4 mm za rok s průměrným zrychlením 0,013 ± 0,006 mm[nenalezeno v uvedeném zdroji] za rok.[16][17] V letech 1993–2017 rostla hladina průměrně o 3,1 mm za rok a v letech 2005–2017 o 3,8 mm za rok (z čehož přírůstek vody dává 2,5 mm za rok a teplotní roztažnost 1,1 mm za rok).[18] Od začátku pozemních měření v roce 1870 byl zaznamenán souhrnný nárůst hladiny moří o 195 mm. Vzestup hladiny oceánů se projevuje výrazněji pomaleji, než nárůst globální průměrné teploty – už dosavadní vzestup teploty o 1 K v dlouhodobém horizontu povede k nárůstu hladiny oceánů o přibližně 2,3 m s možným odstupem až 2000 let;[19] za předpokladu scénáře vysokých emisí – vysokého nárůstu teplot však může narůst až o 7 metrů do roku 2500.[20]
↑KOSMICKÁ GEODÉZIE [online]. Nakladatelství ČVUT [cit. 2024-01-30]. Dostupné online.
↑ Concepts and Terminology for Sea Level: Mean, Variability and Change, Both Local and Global. www.researchgate.net [online]. [cit. 2024-08-30]. Dostupné online.
↑ Early Earth's hot mantle may have led to Archean 'water world'. phys.org [online]. 2021-03-30 [cit. 2021-10-15]. Dostupné online. (anglicky)
↑FLAMENT, Nicolas; COLTICE, Nicolas; REY, Patrice F. The evolution of the 87Sr/86Sr of marine carbonates does not constrain continental growth. S. 177–188. Precambrian Research [online]. 2013-05. Roč. 229, s. 177–188. Dostupné online. DOI10.1016/j.precamres.2011.10.009. (anglicky)
↑ Longer Snowball Earth deglaciation could have driven multiple phases of sea level rise and fall. phys.org [online]. [cit. 2024-12-10]. Dostupné online.
↑VÉRARD, Christian; HOCHARD, Cyril; BAUMGARTNER, Peter O.; STAMPFLI, Gérard M.; LIU, Min. 3D palaeogeographic reconstructions of the Phanerozoic versus sea-level and Sr-ratio variations. S. 64–84. Journal of Palaeogeography [online]. 2015-01. Roč. 4, čís. 1, s. 64–84. Dostupné online. DOI10.3724/SP.J.1261.2015.00068. (anglicky)
↑NICHOLLS, R. J.; CAZENAVE, A. Sea-Level Rise and Its Impact on Coastal Zones. Science. 2010-06-18, roč. 328, čís. 5985, s. 1517–1520. Dostupné online [cit. 2019-11-03]. ISSN0036-8075. DOI10.1126/science.1185782. (anglicky)
↑ What Earth's gravity reveals about climate change. phys.org [online]. [cit. 2019-11-03]. Dostupné online. (anglicky)
↑Anders Levermann, Peter U. Clark, Ben Marzeion, Glenn A. Milne, David Pollard, Valentina Radic, and Alexander Robinson. The multimillennial sea-level commitment of global warming. PNAS. 13 June 2013, s. 13745–13750. Dostupné online. DOI10.1073/pnas.1219414110.Je zde použita šablona {{Cite journal}} označená jako k „pouze dočasnému použití“.