Fraktál je podle původní Mandelbrotovy definice množina, jejíž Hausdorffova dimenze je větší než dimenze topologická. Lze jej také definovat poněkud jednodušeji (méně obecně) jako geometrický objekt, který má následující vlastnosti:
je soběpodobný – znamená to, že pokud daný útvar pozorujeme v jakémkoliv měřítku či rozlišení, pozorujeme stále opakující se určitý charakteristický tvar (motiv);
mívá na první pohled velmi složitý tvar, ale je generován opakovaným použitím jednoduchých pravidel.
Fraktály se jeví coby nejsložitější geometrické objekty, které současná matematika zkoumá, mají však často překvapivě jednoduchou matematickou strukturu.
Termín fraktál použil poprvé matematik Benoît Mandelbrot v roce 1975. Pochází z latinského fractus – rozbitý. Podobné objekty byly známy v matematice již dlouho předtím (např. Kochova křivka). B. Mandelbrot navázal na článek Deux types fondamentaux de distribution statistique (vyšlo česky v roce 1941 ve Statistickém obzoru, r. 22, str. 171-222, pod názvem Přírodní dualita statistického rozložení) českého geografa, demografa a statistikaJaromíra Korčáka z roku 1938.[1]
Druhy fraktálů
Dokonce 2000 násobné zvětšení Mandelbrotova fraktálu nesníží kvalitu nejjemnějších detailů jež stále mají charakteristický tvar celého obrazce.
Mnoho přírodních tvarů je možné modelovat fraktální geometrií, například hory, mraky, sněhové vločky,stromy, řeky a nebo cévní systém. Dobrým příkladem organického fraktálu je romanesko (druh květáku).