Llei de força d'Ampère

En magnetoestàtica, la força d'atracció o repulsió entre dos cables que transporten corrent (vegeu la primera figura a continuació) s'anomena sovint llei de força d'Ampère. L'origen físic d'aquesta força és que cada cable genera un camp magnètic, seguint la llei de Biot-Savart, i l'altre cable experimenta una força magnètica com a conseqüència, seguint la llei de la força de Lorentz.

Equació

Cas especial: dos cables rectes paral·lels

L'exemple més conegut i més senzill de la llei de la força d'Ampère, que subposava (abans del 20 de maig de 2019 [1]) la definició de l'amper, la unitat SI del corrent elèctric, afirma que la força magnètica per unitat de longitud entre dos conductors rectes paral·lels és

on

és la constant de força magnètica de la llei de Biot-Savart, és la força total sobre qualsevol dels cables per unitat de longitud del més curt (com més llarg s'aproxima com a infinitament llarg en relació amb el més curt), és la distància entre els dos cables, i , són els corrents continus que transporten els cables.

Aquesta és una bona aproximació si un cable és prou més llarg que l'altre, de manera que es pot aproximar com a infinitament llarg, i si la distància entre els cables és petita en comparació amb les seves longituds (de manera que es compleixi l'aproximació d'un cable infinit), però grans en comparació amb els seus diàmetres (de manera que també es poden aproximar com a línies infinitament primes). El valor de depèn del sistema d'unitats escollit i del valor de decideix com de gran serà la unitat de corrent.

En el sistema SI, [2][3] amb la constant magnètica, en unitats SI

μ0 = 1,25663706212(19)×10−6 H/m

Cas general

La formulació general de la força magnètica per a geometries arbitràries es basa en integrals de línia iterades i combina la llei de Biot-Savart i la força de Lorentz en una equació tal com es mostra a continuació.[4]

Dos cables que transporten corrent s'atrauen magnèticament: el cable inferior té un corrent I1, que crea un camp magnètic B1. El cable superior transporta un corrent I2 a través del camp magnètic B1, de manera que (per la força de Lorentz) el cable experimenta una força F12. (No es mostra el procés simultani en què el cable superior fa un camp magnètic que provoca una força al cable inferior.)

on

  • és la força magnètica total que sent pel fil 1 a causa del fil 2 (normalment es mesura en newtons),
  • i són els corrents que circulen pels cables 1 i 2, respectivament (normalment es mesuren en amperes),
  • La integració de doble línia suma la força sobre cada element del cable 1 a causa del camp magnètic de cada element del cable 2,
  • i són vectors infinitesimals associats amb el cable 1 i el cable 2 respectivament (normalment mesurats en metres); vegeu la integral de línia per a una definició detallada,
  • El vector és el vector unitari que apunta des de l'element diferencial del cable 2 cap a l'element diferencial del cable 1, i |r| és la distància que separa aquests elements,
  • La multiplicació × és un producte creuat vectorial,
  • El signe de és relativa a l'orientació (per exemple, si apunta en la direcció del corrent convencional, doncs ).

Per determinar la força entre cables en un medi material, la constant magnètica es substitueix per la permeabilitat real del medi.

Per al cas de dos cables tancats separats, la llei es pot reescriure de la següent manera equivalent ampliant el producte del triple vectorial i aplicant el teorema de Stokes: [5] En aquesta forma, és immediatament obvi que la força sobre el cable 1 deguda al cable 2 és igual i oposada a la força sobre el cable 2 a causa del cable 1, d'acord amb la tercera llei del moviment de Newton.

Referències

  1. «26th CGPM Resolutions» (en anglès). BIPM. [Consulta: 1r agost 2020].
  2. Raymond A Serway & Jewett JW. Serway's principles of physics: a calculus based text (en anglès). Fourth. Belmont, California: Thompson Brooks/Cole, 2006, p. 746. ISBN 0-534-49143-X. 
  3. Paul M. S. Monk. Physical chemistry: understanding our chemical world (en anglès). New York: Chichester: Wiley, 2004, p. 16. ISBN 0-471-49181-0. 
  4. Tai L. Chow. Introduction to electromagnetic theory: a modern perspective (en anglès). Boston: Jones and Bartlett, 2006, p. 153. ISBN 0-7637-3827-1. 
  5. Christodoulides, C. American Journal of Physics, 56, 4, 1988, pàg. 357–362. Bibcode: 1988AmJPh..56..357C. DOI: 10.1119/1.15613.

Read other articles:

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (أكتوبر 2019) الحدثكأس إيطاليا 1997–98 إيه سي ميلان نادي لاتسيو 2 3 التاريخ1998  →نهائي كأس إيطاليا 1997  نهائي كأس إيطال...

 

 

Gamelan Bali Seorang penari yang diiringi gamelan Bali Gamelan Bali adalah salah satu jenis gamelan yang ada di Indonesia. Gamelan ini memiliki perbedaan dengan gamelan jawa yaitu bentuk wilah (bilah pada saron) lebih tebal, bentuk pencon (bentuk gamelan seperti bonang) lebih banyak daripada wilah, ritme lebih cepat.[1] Gamelan Bali sangat khas terutama melalui bunyinya yang meledak-ledak, berkecepatan tinggi, serta bagian gending yang lebih dinamis. Ritme musik yang cepat terutama di...

 

 

Colombian statesman and soldier In this Spanish name, the first or paternal surname is Gutiérrez and the second or maternal family name is Prieto. Santos Gutiérrez7th President of the United States of ColombiaIn officeApril 1, 1868 – April 1, 1870Preceded bySantos AcostaSucceeded byEustorgio SalgarMember of the Executive Ministry of the United States of ColombiaIn officeFebruary 9, 1863 – May 14, 1863Serving with Eustorgio Salgar, José Hilario Lóp...

Cet article ou cette section contient des informations sur des scrutins à venir. Il se peut que ces informations soient de nature spéculative et que leur teneur change considérablement alors que les événements approchent.La dernière modification de cette page a été faite le 20 décembre 2023 à 00:18. 2022 2026 Élections sénatoriales américaines de 2024 5 novembre 2024 Type d’élection Sénatoriales Postes à élire 34 sièges sur 100 du Sénat Parti démocrate �...

 

 

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт�...

 

 

Sebuah perhitungan Indeks Pembangunan Manusia (IPM) yang menggunakan metode baru dilaksanakan oleh Badan Pusat Statistik (BPS) Jawa Timur dari tahun 2010 hingga sekarang. Berikut ini akan disajikan penjelasan, sejarah, dan metodologi perhitungan IPM, serta daftar kabupaten dan kota Jawa Timur menurut IPM tahun 2011. Penjelasan Indeks Pembangunan Manusia (IPM)/Human Development Index (HDI) adalah pengukuran perbandingan dari harapan hidup, melek huruf, pendidikan, dan standar hidup untuk semua...

Residence of head of state An official residence is a residence designated by an authority and assigned to an official (such as a head of state, head of government, governor, or other senior figures), and may not always be the same place where the office holder conducts their official functions or lives.[1][2][3][4] List of official residences, by country Afghanistan Arg (Cabinet) Albania Prime Minister's Office Pallati i Brigadave Ish-Blloku (former residence ...

 

 

City in Florida, United States of AmericaArcadia, FloridaCityCity of ArcadiaArcadia Historic District SealLocation of Arcadia in DeSoto County, Florida....Coordinates: 27°12′54″N 81°51′32″W / 27.215°N 81.859°W / 27.215; -81.859CountryUnited States of AmericaStateFloridaCountyDeSotoIncorporated1886Named forArcadia AlbrittonGovernment • TypeMayor-Council • MayorRobert W. Heine Jr. • Deputy MayorKeith Keene • Co...

 

 

This article was nominated for deletion. The discussion was closed on 2 February 2024 with a consensus to merge the content into the article Scooby-Doo. If you find that such action has not been taken promptly, please consider assisting in the merger instead of re-nominating the article for deletion. To discuss the merger, please use the destination article's talk page. (February 2024) Fictional dog treat in the Scooby Doo cartoons This article has multiple issues. Please help improve it or d...

American politician This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: William Barnum – news · newspapers · books · scholar · JSTOR (March 2013) (Learn how and when to remove this message) William BarnumChair of the Democratic National CommitteeIn officeMarch 4, 1877 – April 30, 1889Preceded byAbram ...

 

 

第15届马来西亚国会 ←第14届国会 现任→概览立法机关马来西亚国会管辖 马来西亚召开会议地点马来西亚国会大厦任期2022年12月19日-选举間接選舉及委任官方网站www.parlimen.gov.my上议院议员数量70主席莱士雅丁(2020年9月2日–2023年6月15日)旺朱乃迪(2023年6月19日–2024年1月19日)慕登达加(2024年2月19日–)副主席莫哈末阿里·莫哈末(英语:Mohamad Ali Mohamad)(2020�...

 

 

Untuk museum bernama sama, lihat Museum Negeri Mpu Tantular. Kakawin Sutasoma karya Mpu Tantular Mpu Tantular yang hidup pada abad ke-14 di Majapahit adalah seorang pujangga ternama Sastra Jawa. Ia hidup pada pemerintahan raja Rājasanagara (Hayam Wuruk). Ia masih saudara sang raja yaitu keponakan (bhrātrātmaja dalam bahasa Kawi atau bahasa Sanskerta) dan menantu dari adik wanita sang raja Hayam Wuruk. Nama Tantular terdiri dari dua kata: tan (tidak) dan tular (tular atau terpengaruhi). Art...

Type of armored personnel carrier with direct-fire support Not to be confused with Improvised fighting vehicle. IFV redirects here. For the Institut Français, see Institut français de Vienne. A M2 Bradley tracked infantry fighting vehicle in US service during the Second Battle of Fallujah (2004) A Russian BMP-3 with embarked infantry An infantry fighting vehicle (IFV), also known as a mechanized infantry combat vehicle (MICV),[1] is a type of armoured fighting vehicle used to carry ...

 

 

COVID-19 pandemic in OhioMap of the outbreak in Ohio by confirmed new infections per 100,000 people over 14 days (updated June 13, 2024)   1,000+   500–1,000   200–500   100–200   50–100   20–50   10–20   0–10   no casesPercent of total population in each county of Ohio who have started the COVID-19 vaccination (at least one shot) on October 26, 2023   >80%   70 - 80...

 

 

British television variety show Tonight at the London PalladiumAlso known asSunday Night at the London PalladiumThe London Palladium ShowSunday Night at the PalladiumGenreVariety showCreated byVal ParnellPresented byOriginal series:Tommy Trinder (1955–1958)Bruce Forsyth (1958–1960, 1961–1964, 1998, 2000)Don Arrol (1960–1961)Norman Vaughan (1962–1965, 1974)Jimmy Tarbuck (1965–1967)Jim Dale (1973–1974)Ted Rogers (1974)Revived series:Bradley Walsh (2014–2017)Stephen Mulhern (2014...

Il Gonfaloniere della Chiesa o Gonfaloniere Papale (in latino Vexillifer Ecclesiæ) fu una carica politica e militare dello Stato Pontificio, affidata ad un personaggio di altissimo rango. Nato dall'impiego del gonfalone in ambito bellico, diventò in seguito un titolo cerimoniale e politico. Stemma di Federico da Montefeltro, gonfaloniere della Chiesa Stemma di Cesare Borgia come duca di Romagna, duca di Valentinois e capitano generale della Chiesa(1501-1503) Stemma di Francesco II Gonzaga, ...

 

 

Australian rules footballer Australian rules footballer Sam Kerridge Kerridge playing for Carlton in April 2018Personal informationFull name Sam KerridgeNickname(s) KedgeDate of birth (1993-04-26) 26 April 1993 (age 31)Place of birth Mildura, VictoriaOriginal team(s) Mildura (SFL)Bendigo Pioneers (TAC Cup)Draft No. 27, 2011 National Draft, AdelaideDebut Round 3, 2012, Adelaide vs. Hawthorn, at MCGHeight 188 cm (6 ft 2 in)Weight 85 kg (13 st 5 lb; 1...

 

 

Digital wallet platform by Google This article is about the mobile app introduced in 2022. For the discontinued service of the same name, see Google Wallet (2011–2018). Google Pay (2018–2022) redirects here. For the 2020 app, see Google Pay (mobile app). Google WalletDeveloper(s)GoogleInitial releaseJuly 18, 2022; 2 years ago (2022-07-18)Operating system Android Wear OS Fitbit OS Service nameGoogle Wallet(or Wallet for short)TypeDigital wallet appWebsitewallet.google Goo...

保拉坎迪杜Paula Cândido市镇保拉坎迪杜在巴西的位置坐标:20°52′26″S 42°58′48″W / 20.8739°S 42.98°W / -20.8739; -42.98国家巴西州米纳斯吉拉斯州面积 • 总计268.74 平方公里(103.76 平方英里)海拔730 公尺(2,400 英尺)人口 • 總計9,086人 • 密度33.8人/平方公里(87.6人/平方英里) 保拉坎迪杜(葡萄牙语:Paula Cândido)是巴西�...

 

 

Primer Gobierno Díaz El primer Gobierno Díaz en septiembre de 2013Información generalÁmbito AndalucíaPresidenta Susana Díaz PachecoFormación 10 de septiembre de 2013Disolución 18 de junio de 2015Composición del gabineteN.º de ministerios 11Partido (s) PSOE-A IULV-CAElecciónElección 25 de marzo de 2015Situación en el poder legislativoel Parlamento de Andalucía ix legislaturaParlamento de Andalucía 47/10912/109Sucesión Segundo Gobierno Griñán Primer Gobierno Díaz Segundo Gobi...