Smatra se da RGS2 ima zaštitne efekte protiv hipertrofije miokarda, kao i pretkomorskih aritmija.[8][9] Povećan stimulacija Gs povezanih β1-adrenergičnih receptor i Gq]] povezanih α1-adrenergičnih receptora u srcu može dovesti do hipertrofije srca.[8] U slučaju hipertrofije posredovane Gq proteinskim receptorom (GqPCR), Gαq će aktivirati unutarćelijske afektore fosfolipaza Cβ i rho guaninski faktor razmjene nukleotida da stimulira ćelijske procese koji dovode do hipertrofije kardiomiocita.[8][10] RGS2 funkcionira kao protein koji aktivira GTP-azu (GAP) koja djeluje na povećanje prirodne GTPazne aktivnosti podjedinice Gα.[8][10] Povećanjem GTPazne aktivnosti Gα podjedinice, RGS2 promovira GTP hidrolizu nazad u GDP, pretvarajući tako podjedinicu Gα nazad u njeno neaktivno stanje i smanjujući njenu signalnu sposobnost.[10] I GsPCR i GqPCR aktivacija mogu doprinijeti srčanoj hipertrofiji putem aktivacije MAP-kinaza. Pokazalo se da RGS2 smanjuje fosforilaciju tih MAP-kinaza i stoga smanjuje njihovu aktivaciju kao odgovor na Gαs-signalizaciju.[8]
U slučaju hipertrofije posredovane GsPCR, glavni mehanizam kojim signalizacija doprinosi hipertrofiji je putem podjedinice Gβγ; Gαs signalizacija sama po sebi nije dovoljna.[11] Ipak, pokazalo se da RGS2 inhibira Gs posredovanu hipertrofiju. Mehanizam kako RGS2 reguliše povećanu Gβγ signalizaciju nije dobro shvaćen, osim činjenice da nije povezan sa GAP funkcijom RGS2a.[11] Nedostatak RGS2 je povezan sa povećanom hipertrofijom srca kod miševa.[8] Srca s nedostatkom RGS2 izgledaju normalno, sve dok se ne suoče s povećanim opterećenjem, na koje spremno reagiraju pojačanim signalom Gαq i hipertrofijom.[8][11]
Siderovski DP, Blum S, Forsdyke RE, Forsdyke DR (1991). "A set of human putative lymphocyte G0/G1 switch genes includes genes homologous to rodent cytokine and zinc finger protein-encoding genes". DNA Cell Biol. 9 (8): 579–87. doi:10.1089/dna.1990.9.579. PMID1702972.
Wu HK, Heng HH, Shi XM, et al. (1995). "Differential expression of a basic helix-loop-helix phosphoprotein gene, G0S8, in acute leukemia and localization to human chromosome 1q31". Leukemia. 9 (8): 1291–8. PMID7643615.
Heximer SP, Cristillo AD, Forsdyke DR (1997). "Comparison of mRNA expression of two regulators of G-protein signaling, RGS1/BL34/1R20 and RGS2/G0S8, in cultured human blood mononuclear cells". DNA Cell Biol. 16 (5): 589–98. doi:10.1089/dna.1997.16.589. PMID9174164.
Mittmann C, Schüler C, Chung CH, et al. (2001). "Evidence for a short form of RGS3 preferentially expressed in the human heart". Naunyn Schmiedebergs Arch. Pharmacol. 363 (4): 456–63. doi:10.1007/s002100000376. PMID11330340. S2CID36657400.
^ abcdefghNunn C, Zou MX, Sobiesiak AJ, Roy AA, Kirshenbaum LA, Chidiac P (august 2010). "RGS2 inhibits beta-adrenergic receptor-induced cardiomyocyte hypertrophy". Cell. Signal. 22 (8): 1231–9. doi:10.1016/j.cellsig.2010.03.015. PMID20362664.
^ abTuomi JM, Chidiac P, Jones DL (februar 2010). "Evidence for enhanced M3 muscarinic receptor function and sensitivity to atrial arrhythmia in the RGS2-deficient mouse". Am. J. Physiol. Heart Circ. Physiol. 298 (2): H554–61. doi:10.1152/ajpheart.00779.2009. PMID19966055.
^Tang KM, Wang GR, Lu P, Karas RH, Aronovitz M, Heximer SP, Kaltenbronn KM, Blumer KJ, Siderovski DP, Zhu Y, Mendelsohn ME, Tang M, Wang G (decembar 2003). "Regulator of G-protein signaling-2 mediates vascular smooth muscle relaxation and blood pressure". Nat. Med. 9 (12): 1506–12. doi:10.1038/nm958. PMID14608379. S2CID20331752.
^Wieland T, Lutz S, Chidiac P (april 2007). "Regulators of G protein signalling: a spotlight on emerging functions in the cardiovascular system". Curr Opin Pharmacol. 7 (2): 201–7. doi:10.1016/j.coph.2006.11.007. PMID17276730.